Loading…
Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines
While IGF-1 plays a role in early B-cell development, little is known of insulin and insulin-like growth factor-1 (IGF-1) action in post-marrow B-cells. Recently, our laboratory demonstrated that mouse and human multiple myeloma (MM) cell lines possess functional insulin receptors (IRs) and IGF-1 re...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 1994-06, Vol.54 (12), p.3179-3185 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3185 |
container_issue | 12 |
container_start_page | 3179 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 54 |
creator | FREUND, G. G KULAS, D. T WAY, B. A MOONEY, R. A |
description | While IGF-1 plays a role in early B-cell development, little is known of insulin and insulin-like growth factor-1 (IGF-1) action in post-marrow B-cells. Recently, our laboratory demonstrated that mouse and human multiple myeloma (MM) cell lines possess functional insulin receptors (IRs) and IGF-1 receptors (IGF-1Rs). In this study, we show that responsiveness to insulin and IGF-1 is more developed in human MM cell lines than in human B-lymphoblastoid cell lines. Two human MM cell lines (U266 and RPMI 8226) were compared to three B-lymphoblastoid cell lines [Epstein-Barr virus immortalized B-cells (EBV), a Burkitt lymphoma cell line (Ramos), and a non-EBV lymphoblastoid cell line (HS Sultan)]. Surface IR and IGF-1R expression, measured by flow cytometry, demonstrated that the MM cell lines expressed more IRs and IGF-1Rs than did the EBV, Ramos, or HS Sultan cell lines. In vitro receptor kinase activity of affinity-purified receptors showed that the MM cells had more phosphorylated receptors than did the EBV, Ramos, or HS Sultan cells. Intracellular receptor signaling was also markedly different between the two cell groups. Whole cell phosphorylation studies showed that MM cells possessed not only hormone-dependent receptor autophosphorylation (M(r) 97,000) but also substrate phosphorylation (M(r) 185,000; 60,000). The lymphoblastoid cells, while demonstrating receptor autophosphorylation (IR autophosphorylation in the EBV cell line at 200 nM hormone was similar to MM receptor phosphorylation at 2 nM), lacked hormone-responsive substrates. The MM cell lines contained significantly more hormone-stimulated phosphatidylinositol 3-kinase (PI 3-kinase) activity than the B-lymphoblastoid cell lines. In the MM cells, PI 3-kinase was activated by at least 10-fold, but, in the B-lymphoblastoid cell lines, it was activated by no more than 2-fold. Hormone-responsive glucose metabolism was also greater in the MM cell lines. In the U266 cells, insulin increased lactate production 62 +/- 9 and 101 +/- 12% (mean +/- SE) at concentrations of 2 nM and 200 nM, respectively. IGF-1 produced 72 +/- 9 and 99 +/- 13% increases at similar concentrations. In the 8226 cells, insulin increased lactate production 4 +/- 4 and 36 +/- 15% at 2 and 200 nM, respectively. IGF-1 produced a 13 +/- 6 and 70 +/- 18% increase. In the EBV and Ramos cells, neither hormone increased lactate production by more than 10 +/- 3%. |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_76522599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16815100</sourcerecordid><originalsourceid>FETCH-LOGICAL-h215t-950a5c664150a5070a2054cc9ba7f8ccbda4b96557411d85880f207e1671e023</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhisEGmPwCEg5IG6VkrZp2iNMDJAmcdm9clOXBdKmJKmg78ODkomCuHHyb_vzL9tH0ZLxtIhFlvHjaEkpLWKeieQ0OnPuJaScUb6IFkVCOU_FMvrcjL30yvSgierdqFVPoG9-dKzVK5Jna979nrQgvbExIxYlDkE6AhbJYLFFi71XoPVE8CMUnMODB-lG7dWgkXQTatMBkag1CcYYZh2RphuCRUO8Ibexnrphb2oNzhvV_EHPo5MWtMOLOa6i3eZut36It0_3j-ubbbxPGPdxySlwmecZOwgqKIQrMynLGkRbSFk3kNVlzrnIGGsKXhS0TahAlguGNElX0fW37WDN24jOV51yhy2gRzO6SuQ8SXhZ_guyvGDh0TSAlzM41h021WBVB3aq5veH_tXcBydBtxZ6qdwvljFa5glPvwDBhpG7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16815100</pqid></control><display><type>article</type><title>Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines</title><source>EZB Electronic Journals Library</source><creator>FREUND, G. G ; KULAS, D. T ; WAY, B. A ; MOONEY, R. A</creator><creatorcontrib>FREUND, G. G ; KULAS, D. T ; WAY, B. A ; MOONEY, R. A</creatorcontrib><description>While IGF-1 plays a role in early B-cell development, little is known of insulin and insulin-like growth factor-1 (IGF-1) action in post-marrow B-cells. Recently, our laboratory demonstrated that mouse and human multiple myeloma (MM) cell lines possess functional insulin receptors (IRs) and IGF-1 receptors (IGF-1Rs). In this study, we show that responsiveness to insulin and IGF-1 is more developed in human MM cell lines than in human B-lymphoblastoid cell lines. Two human MM cell lines (U266 and RPMI 8226) were compared to three B-lymphoblastoid cell lines [Epstein-Barr virus immortalized B-cells (EBV), a Burkitt lymphoma cell line (Ramos), and a non-EBV lymphoblastoid cell line (HS Sultan)]. Surface IR and IGF-1R expression, measured by flow cytometry, demonstrated that the MM cell lines expressed more IRs and IGF-1Rs than did the EBV, Ramos, or HS Sultan cell lines. In vitro receptor kinase activity of affinity-purified receptors showed that the MM cells had more phosphorylated receptors than did the EBV, Ramos, or HS Sultan cells. Intracellular receptor signaling was also markedly different between the two cell groups. Whole cell phosphorylation studies showed that MM cells possessed not only hormone-dependent receptor autophosphorylation (M(r) 97,000) but also substrate phosphorylation (M(r) 185,000; 60,000). The lymphoblastoid cells, while demonstrating receptor autophosphorylation (IR autophosphorylation in the EBV cell line at 200 nM hormone was similar to MM receptor phosphorylation at 2 nM), lacked hormone-responsive substrates. The MM cell lines contained significantly more hormone-stimulated phosphatidylinositol 3-kinase (PI 3-kinase) activity than the B-lymphoblastoid cell lines. In the MM cells, PI 3-kinase was activated by at least 10-fold, but, in the B-lymphoblastoid cell lines, it was activated by no more than 2-fold. Hormone-responsive glucose metabolism was also greater in the MM cell lines. In the U266 cells, insulin increased lactate production 62 +/- 9 and 101 +/- 12% (mean +/- SE) at concentrations of 2 nM and 200 nM, respectively. IGF-1 produced 72 +/- 9 and 99 +/- 13% increases at similar concentrations. In the 8226 cells, insulin increased lactate production 4 +/- 4 and 36 +/- 15% at 2 and 200 nM, respectively. IGF-1 produced a 13 +/- 6 and 70 +/- 18% increase. In the EBV and Ramos cells, neither hormone increased lactate production by more than 10 +/- 3%.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>PMID: 8205537</identifier><identifier>CODEN: CNREA8</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Animals ; B-Lymphocytes - microbiology ; B-Lymphocytes - physiology ; B-Lymphocytes - ultrastructure ; Biological and medical sciences ; Burkitt Lymphoma - metabolism ; Burkitt Lymphoma - physiopathology ; Burkitt Lymphoma - ultrastructure ; Cell Line ; Herpesvirus 4, Human ; Humans ; Immunodeficiencies. Immunoglobulinopathies ; Immunoglobulinopathies ; Immunopathology ; Insulin - metabolism ; Insulin - pharmacology ; Insulin - physiology ; Insulin-Like Growth Factor I - metabolism ; Insulin-Like Growth Factor I - pharmacology ; Insulin-Like Growth Factor I - physiology ; Medical sciences ; Mice ; Multiple Myeloma - metabolism ; Multiple Myeloma - pathology ; Multiple Myeloma - physiopathology ; Phenotype ; Phosphorylation ; Receptor, IGF Type 1 - physiology ; Receptor, Insulin - physiology ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Tumor Cells, Cultured - drug effects</subject><ispartof>Cancer research (Chicago, Ill.), 1994-06, Vol.54 (12), p.3179-3185</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4109625$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8205537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FREUND, G. G</creatorcontrib><creatorcontrib>KULAS, D. T</creatorcontrib><creatorcontrib>WAY, B. A</creatorcontrib><creatorcontrib>MOONEY, R. A</creatorcontrib><title>Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>While IGF-1 plays a role in early B-cell development, little is known of insulin and insulin-like growth factor-1 (IGF-1) action in post-marrow B-cells. Recently, our laboratory demonstrated that mouse and human multiple myeloma (MM) cell lines possess functional insulin receptors (IRs) and IGF-1 receptors (IGF-1Rs). In this study, we show that responsiveness to insulin and IGF-1 is more developed in human MM cell lines than in human B-lymphoblastoid cell lines. Two human MM cell lines (U266 and RPMI 8226) were compared to three B-lymphoblastoid cell lines [Epstein-Barr virus immortalized B-cells (EBV), a Burkitt lymphoma cell line (Ramos), and a non-EBV lymphoblastoid cell line (HS Sultan)]. Surface IR and IGF-1R expression, measured by flow cytometry, demonstrated that the MM cell lines expressed more IRs and IGF-1Rs than did the EBV, Ramos, or HS Sultan cell lines. In vitro receptor kinase activity of affinity-purified receptors showed that the MM cells had more phosphorylated receptors than did the EBV, Ramos, or HS Sultan cells. Intracellular receptor signaling was also markedly different between the two cell groups. Whole cell phosphorylation studies showed that MM cells possessed not only hormone-dependent receptor autophosphorylation (M(r) 97,000) but also substrate phosphorylation (M(r) 185,000; 60,000). The lymphoblastoid cells, while demonstrating receptor autophosphorylation (IR autophosphorylation in the EBV cell line at 200 nM hormone was similar to MM receptor phosphorylation at 2 nM), lacked hormone-responsive substrates. The MM cell lines contained significantly more hormone-stimulated phosphatidylinositol 3-kinase (PI 3-kinase) activity than the B-lymphoblastoid cell lines. In the MM cells, PI 3-kinase was activated by at least 10-fold, but, in the B-lymphoblastoid cell lines, it was activated by no more than 2-fold. Hormone-responsive glucose metabolism was also greater in the MM cell lines. In the U266 cells, insulin increased lactate production 62 +/- 9 and 101 +/- 12% (mean +/- SE) at concentrations of 2 nM and 200 nM, respectively. IGF-1 produced 72 +/- 9 and 99 +/- 13% increases at similar concentrations. In the 8226 cells, insulin increased lactate production 4 +/- 4 and 36 +/- 15% at 2 and 200 nM, respectively. IGF-1 produced a 13 +/- 6 and 70 +/- 18% increase. In the EBV and Ramos cells, neither hormone increased lactate production by more than 10 +/- 3%.</description><subject>Animals</subject><subject>B-Lymphocytes - microbiology</subject><subject>B-Lymphocytes - physiology</subject><subject>B-Lymphocytes - ultrastructure</subject><subject>Biological and medical sciences</subject><subject>Burkitt Lymphoma - metabolism</subject><subject>Burkitt Lymphoma - physiopathology</subject><subject>Burkitt Lymphoma - ultrastructure</subject><subject>Cell Line</subject><subject>Herpesvirus 4, Human</subject><subject>Humans</subject><subject>Immunodeficiencies. Immunoglobulinopathies</subject><subject>Immunoglobulinopathies</subject><subject>Immunopathology</subject><subject>Insulin - metabolism</subject><subject>Insulin - pharmacology</subject><subject>Insulin - physiology</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Insulin-Like Growth Factor I - pharmacology</subject><subject>Insulin-Like Growth Factor I - physiology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Multiple Myeloma - metabolism</subject><subject>Multiple Myeloma - pathology</subject><subject>Multiple Myeloma - physiopathology</subject><subject>Phenotype</subject><subject>Phosphorylation</subject><subject>Receptor, IGF Type 1 - physiology</subject><subject>Receptor, Insulin - physiology</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Tumor Cells, Cultured - drug effects</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhisEGmPwCEg5IG6VkrZp2iNMDJAmcdm9clOXBdKmJKmg78ODkomCuHHyb_vzL9tH0ZLxtIhFlvHjaEkpLWKeieQ0OnPuJaScUb6IFkVCOU_FMvrcjL30yvSgierdqFVPoG9-dKzVK5Jna979nrQgvbExIxYlDkE6AhbJYLFFi71XoPVE8CMUnMODB-lG7dWgkXQTatMBkag1CcYYZh2RphuCRUO8Ibexnrphb2oNzhvV_EHPo5MWtMOLOa6i3eZut36It0_3j-ubbbxPGPdxySlwmecZOwgqKIQrMynLGkRbSFk3kNVlzrnIGGsKXhS0TahAlguGNElX0fW37WDN24jOV51yhy2gRzO6SuQ8SXhZ_guyvGDh0TSAlzM41h021WBVB3aq5veH_tXcBydBtxZ6qdwvljFa5glPvwDBhpG7</recordid><startdate>19940615</startdate><enddate>19940615</enddate><creator>FREUND, G. G</creator><creator>KULAS, D. T</creator><creator>WAY, B. A</creator><creator>MOONEY, R. A</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>19940615</creationdate><title>Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines</title><author>FREUND, G. G ; KULAS, D. T ; WAY, B. A ; MOONEY, R. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h215t-950a5c664150a5070a2054cc9ba7f8ccbda4b96557411d85880f207e1671e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>B-Lymphocytes - microbiology</topic><topic>B-Lymphocytes - physiology</topic><topic>B-Lymphocytes - ultrastructure</topic><topic>Biological and medical sciences</topic><topic>Burkitt Lymphoma - metabolism</topic><topic>Burkitt Lymphoma - physiopathology</topic><topic>Burkitt Lymphoma - ultrastructure</topic><topic>Cell Line</topic><topic>Herpesvirus 4, Human</topic><topic>Humans</topic><topic>Immunodeficiencies. Immunoglobulinopathies</topic><topic>Immunoglobulinopathies</topic><topic>Immunopathology</topic><topic>Insulin - metabolism</topic><topic>Insulin - pharmacology</topic><topic>Insulin - physiology</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Insulin-Like Growth Factor I - pharmacology</topic><topic>Insulin-Like Growth Factor I - physiology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Multiple Myeloma - metabolism</topic><topic>Multiple Myeloma - pathology</topic><topic>Multiple Myeloma - physiopathology</topic><topic>Phenotype</topic><topic>Phosphorylation</topic><topic>Receptor, IGF Type 1 - physiology</topic><topic>Receptor, Insulin - physiology</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Tumor Cells, Cultured - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FREUND, G. G</creatorcontrib><creatorcontrib>KULAS, D. T</creatorcontrib><creatorcontrib>WAY, B. A</creatorcontrib><creatorcontrib>MOONEY, R. A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FREUND, G. G</au><au>KULAS, D. T</au><au>WAY, B. A</au><au>MOONEY, R. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>1994-06-15</date><risdate>1994</risdate><volume>54</volume><issue>12</issue><spage>3179</spage><epage>3185</epage><pages>3179-3185</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><coden>CNREA8</coden><abstract>While IGF-1 plays a role in early B-cell development, little is known of insulin and insulin-like growth factor-1 (IGF-1) action in post-marrow B-cells. Recently, our laboratory demonstrated that mouse and human multiple myeloma (MM) cell lines possess functional insulin receptors (IRs) and IGF-1 receptors (IGF-1Rs). In this study, we show that responsiveness to insulin and IGF-1 is more developed in human MM cell lines than in human B-lymphoblastoid cell lines. Two human MM cell lines (U266 and RPMI 8226) were compared to three B-lymphoblastoid cell lines [Epstein-Barr virus immortalized B-cells (EBV), a Burkitt lymphoma cell line (Ramos), and a non-EBV lymphoblastoid cell line (HS Sultan)]. Surface IR and IGF-1R expression, measured by flow cytometry, demonstrated that the MM cell lines expressed more IRs and IGF-1Rs than did the EBV, Ramos, or HS Sultan cell lines. In vitro receptor kinase activity of affinity-purified receptors showed that the MM cells had more phosphorylated receptors than did the EBV, Ramos, or HS Sultan cells. Intracellular receptor signaling was also markedly different between the two cell groups. Whole cell phosphorylation studies showed that MM cells possessed not only hormone-dependent receptor autophosphorylation (M(r) 97,000) but also substrate phosphorylation (M(r) 185,000; 60,000). The lymphoblastoid cells, while demonstrating receptor autophosphorylation (IR autophosphorylation in the EBV cell line at 200 nM hormone was similar to MM receptor phosphorylation at 2 nM), lacked hormone-responsive substrates. The MM cell lines contained significantly more hormone-stimulated phosphatidylinositol 3-kinase (PI 3-kinase) activity than the B-lymphoblastoid cell lines. In the MM cells, PI 3-kinase was activated by at least 10-fold, but, in the B-lymphoblastoid cell lines, it was activated by no more than 2-fold. Hormone-responsive glucose metabolism was also greater in the MM cell lines. In the U266 cells, insulin increased lactate production 62 +/- 9 and 101 +/- 12% (mean +/- SE) at concentrations of 2 nM and 200 nM, respectively. IGF-1 produced 72 +/- 9 and 99 +/- 13% increases at similar concentrations. In the 8226 cells, insulin increased lactate production 4 +/- 4 and 36 +/- 15% at 2 and 200 nM, respectively. IGF-1 produced a 13 +/- 6 and 70 +/- 18% increase. In the EBV and Ramos cells, neither hormone increased lactate production by more than 10 +/- 3%.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>8205537</pmid><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 1994-06, Vol.54 (12), p.3179-3185 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_proquest_miscellaneous_76522599 |
source | EZB Electronic Journals Library |
subjects | Animals B-Lymphocytes - microbiology B-Lymphocytes - physiology B-Lymphocytes - ultrastructure Biological and medical sciences Burkitt Lymphoma - metabolism Burkitt Lymphoma - physiopathology Burkitt Lymphoma - ultrastructure Cell Line Herpesvirus 4, Human Humans Immunodeficiencies. Immunoglobulinopathies Immunoglobulinopathies Immunopathology Insulin - metabolism Insulin - pharmacology Insulin - physiology Insulin-Like Growth Factor I - metabolism Insulin-Like Growth Factor I - pharmacology Insulin-Like Growth Factor I - physiology Medical sciences Mice Multiple Myeloma - metabolism Multiple Myeloma - pathology Multiple Myeloma - physiopathology Phenotype Phosphorylation Receptor, IGF Type 1 - physiology Receptor, Insulin - physiology Signal Transduction - drug effects Signal Transduction - physiology Tumor Cells, Cultured - drug effects |
title | Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cell lines as compared to B-lymphoblastoid cell lines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20insulin%20and%20insulin-like%20growth%20factor-1%20receptors%20are%20preferentially%20expressed%20in%20multiple%20myeloma%20cell%20lines%20as%20compared%20to%20B-lymphoblastoid%20cell%20lines&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=FREUND,%20G.%20G&rft.date=1994-06-15&rft.volume=54&rft.issue=12&rft.spage=3179&rft.epage=3185&rft.pages=3179-3185&rft.issn=0008-5472&rft.eissn=1538-7445&rft.coden=CNREA8&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E16815100%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h215t-950a5c664150a5070a2054cc9ba7f8ccbda4b96557411d85880f207e1671e023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16815100&rft_id=info:pmid/8205537&rfr_iscdi=true |