Loading…
Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase
Recent evidence demonstrates that the protein kinase C zeta (zeta PKC) isoform is required for the activation of nuclear factor kappa B (NF-kappa B) and mitogenic signaling in Xenopus oocytes and mammalian cells. The mechanism whereby zeta PKC regulates NF-kappa B most probably involves the activati...
Saved in:
Published in: | The Journal of biological chemistry 1994-07, Vol.269 (30), p.19200-19202 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent evidence demonstrates that the protein kinase C zeta (zeta PKC) isoform is required for the activation of nuclear factor
kappa B (NF-kappa B) and mitogenic signaling in Xenopus oocytes and mammalian cells. The mechanism whereby zeta PKC regulates
NF-kappa B most probably involves the activation of a putative I kappa B kinase of molecular mass approximately 50 kDa, which
phosphorylates and inactivates I kappa B. Tumor necrosis factor alpha (TNF alpha) and interleukin-1, besides activating the
phospholipase C-mediated breakdown of phosphatidylcholine, also generate ceramide, which is produced by stimulation of sphingomyelin
hydrolysis. We show here that exogenous addition of sphingomyelinase (SMase) to NIH-3T3 fibroblasts transactivates a kappa
B-dependent chloramphenicol acetyltransferase reporter plasmid, to an extent similar to that produced by TNF alpha or phosphatidylcholine/phospholipase
C. More importantly, the ability of SMase to stimulate this parameter is severely impaired by transfection of a zeta PKC kinase-defective
dominant negative mutant, which suggests a critical role of zeta PKC in SMase signaling. In keeping with this notion, we also
demonstrate here that zeta PKC is activated in vitro by ceramide and in vivo by treatment of NIH-3T3 fibroblasts with SMase. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/s0021-9258(17)32152-x |