Loading…

Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications

We isolated and sequenced Ha hsp17.9, a DNA complementary (cDNA) of dry-seed stored mRNA that encodes a low-molecular-weight heat-shock protein (LMW HSP). Sequence analysis identified Ha hsp17.9, and the previously reported Ha hsp17.6, as cDNAs encoding proteins (HSP17.6 and HSP17.9) which belong to...

Full description

Saved in:
Bibliographic Details
Published in:Plant molecular biology 1994-06, Vol.25 (3), p.479-492
Main Authors: Coca, M A, Almoguera, C, Jordano, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We isolated and sequenced Ha hsp17.9, a DNA complementary (cDNA) of dry-seed stored mRNA that encodes a low-molecular-weight heat-shock protein (LMW HSP). Sequence analysis identified Ha hsp17.9, and the previously reported Ha hsp17.6, as cDNAs encoding proteins (HSP17.6 and HSP17.9) which belong to different families of cytoplasmic LMW HSPs. Using specific antibodies we observed differential expression of both proteins during zygotic embryogenesis under controlled environment, and a remarkable persistence of these LMW HSPs during germination. Immuno-blot analysis of HSP17.9 proteins in two-dimensional gels revealed that the polypeptides expressed in embryos were indistinguishable from LMW HSPs expressed in vegetative tissues in response to water deficit; but they appeared different from homologous proteins expressed in response to thermal-stress. Tissue-print immunolocalization experiments showed that HSP17.9 and HSP17.6 were homogeneously distributed in every tissue of desiccation-tolerant dry seeds and young seedlings under non-stress conditions. These results demonstrate developmental regulation of specific, cytoplasmic, plant LMW HSPs, suggesting also their involvement in water-stress tolerance.
ISSN:0167-4412
1573-5028
DOI:10.1007/bf00043876