Loading…

The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line

The polypeptide diazepam binding inhibitor (DBI) and drug ligands for the mitochondrial peripheral-type benzodiazepine receptor (PBR) have been shown to regulate cholesterol transport, the rate-determining step in steroidogenesis, in hormone-responsive steroidogenic cells including the MA-10 Leydig...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1994-09, Vol.269 (35), p.22105-22112
Main Authors: M Garnier, N Boujrad, S O Ogwuegbu, J R Hudson, Jr, V Papadopoulos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-619ac3459acbeb8b2bf2453dd2248df70fb28dba45077798afa161d589a1cf713
cites cdi_FETCH-LOGICAL-c498t-619ac3459acbeb8b2bf2453dd2248df70fb28dba45077798afa161d589a1cf713
container_end_page 22112
container_issue 35
container_start_page 22105
container_title The Journal of biological chemistry
container_volume 269
creator M Garnier
N Boujrad
S O Ogwuegbu
J R Hudson, Jr
V Papadopoulos
description The polypeptide diazepam binding inhibitor (DBI) and drug ligands for the mitochondrial peripheral-type benzodiazepine receptor (PBR) have been shown to regulate cholesterol transport, the rate-determining step in steroidogenesis, in hormone-responsive steroidogenic cells including the MA-10 Leydig tumor cells. The present study was designed to characterize the role of DBI and PBR in the R2C rat Leydig tumor constitutive steroid-producing cell model. Both DBI and PBR were present in R2C cells. R2C cell treatment with a cholesterol-linked phosphorothioate oligodeoxynucleotide antisense to DBI, but not sense, resulted in the reduction of DBI levels and a concomitant dramatic decrease of the amount of progesterone produced. These observations strongly suggested that DBI was important in maintaining constitutive steroidogenesis in R2C cells. Radioligand binding assays revealed the presence of a single class of PBR binding sites with an affinity 10 times higher (Kd approximately 0.5 nM) than that displayed by the MA-10 PBR (Kd approximately 5 nM). Photolabeling of R2C and MA-10 cell mitochondria with the photoactivatable PBR ligand [3H]1-(2-fluoro-5-nitrophenyl)-N-methyl-N-(1-methyl-propyl)-3- isoquinolinecarboxamide showed that the M(r) 18,000 PBR protein was specifically labeled. This indicates that the R2C cells express a PBR protein which has properties similar to the MA-10 PBR. Chemical crosslinking studies of purified metabolically radiolabeled DBI to mitochondria provided direct evidence that DBI specifically binds to the M(r) 18,000 PBR protein. Moreover, DBI and a PBR synthetic ligand were able to increase steroid production in isolated R2C cell mitochondria which express the 5 nM affinity receptor. However, mitochondrial PBR binding was increased by 6-fold upon addition of the post-mitochondrial fraction, suggesting that a cytosolic factor modulates the binding properties of PBR in R2C cells and is responsible for the 0.5 nM affinity receptor seen in intact cells. In conclusion, these data demonstrate that DBI plays a key role in maintaining R2C constitutive steroidogenesis by binding to the mitochondrial higher affinity PBR which promotes a continuous supply of cholesterol to the inner mitochondrial side chain cleavage cytochrome P450.
doi_str_mv 10.1016/s0021-9258(17)31762-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76678094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76678094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-619ac3459acbeb8b2bf2453dd2248df70fb28dba45077798afa161d589a1cf713</originalsourceid><addsrcrecordid>eNo9UV2L1DAULaKs4-pPWMiDiD5U89E07aMM6wcMCLqCbyFpbqdX2rQmqTL73_xvps6weUgI59xzLucUxQ2jbxll9btIKWdly2Xzmqk3gqmal-JRsWO0EaWQ7MfjYvdAeVo8i_Enzadq2VVx1VDFhJC74u_dAGSZx9MCS0IHxKG5h8VMpUXv0B8J-gEtpjkQ4x0xZMDjAPnT9-gxnciUsW6YvQtoRrJAwCXjZixT1iQW_P181kQPJECXfbJWXGMy6Ek3-5gwrQl_A4kJwoxuPoKHiDFbk5TX-8r35AAnh0eS1ikPdzCOZMx6z4snvRkjvLi818X3D7d3-0_l4cvHz_v3h7Kr2iaVNWtNJyqZbwu2sdz2vJLCOc6rxvWK9pY3zppKUqVU25jesJo52bSGdX1O6rp4ddZdwvxrhZj0hHHbwniY16hVXauGtlUmyjOxC3OMAXq9BJxMOGlG9Vab_rZ1ordONFP6f21a5Lmbi8FqJ3APU5eeMv7yjG_p_8EA2mJOHSbN61YLqTlnVIp_fwmlnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76678094</pqid></control><display><type>article</type><title>The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line</title><source>ScienceDirect</source><creator>M Garnier ; N Boujrad ; S O Ogwuegbu ; J R Hudson, Jr ; V Papadopoulos</creator><creatorcontrib>M Garnier ; N Boujrad ; S O Ogwuegbu ; J R Hudson, Jr ; V Papadopoulos</creatorcontrib><description>The polypeptide diazepam binding inhibitor (DBI) and drug ligands for the mitochondrial peripheral-type benzodiazepine receptor (PBR) have been shown to regulate cholesterol transport, the rate-determining step in steroidogenesis, in hormone-responsive steroidogenic cells including the MA-10 Leydig tumor cells. The present study was designed to characterize the role of DBI and PBR in the R2C rat Leydig tumor constitutive steroid-producing cell model. Both DBI and PBR were present in R2C cells. R2C cell treatment with a cholesterol-linked phosphorothioate oligodeoxynucleotide antisense to DBI, but not sense, resulted in the reduction of DBI levels and a concomitant dramatic decrease of the amount of progesterone produced. These observations strongly suggested that DBI was important in maintaining constitutive steroidogenesis in R2C cells. Radioligand binding assays revealed the presence of a single class of PBR binding sites with an affinity 10 times higher (Kd approximately 0.5 nM) than that displayed by the MA-10 PBR (Kd approximately 5 nM). Photolabeling of R2C and MA-10 cell mitochondria with the photoactivatable PBR ligand [3H]1-(2-fluoro-5-nitrophenyl)-N-methyl-N-(1-methyl-propyl)-3- isoquinolinecarboxamide showed that the M(r) 18,000 PBR protein was specifically labeled. This indicates that the R2C cells express a PBR protein which has properties similar to the MA-10 PBR. Chemical crosslinking studies of purified metabolically radiolabeled DBI to mitochondria provided direct evidence that DBI specifically binds to the M(r) 18,000 PBR protein. Moreover, DBI and a PBR synthetic ligand were able to increase steroid production in isolated R2C cell mitochondria which express the 5 nM affinity receptor. However, mitochondrial PBR binding was increased by 6-fold upon addition of the post-mitochondrial fraction, suggesting that a cytosolic factor modulates the binding properties of PBR in R2C cells and is responsible for the 0.5 nM affinity receptor seen in intact cells. In conclusion, these data demonstrate that DBI plays a key role in maintaining R2C constitutive steroidogenesis by binding to the mitochondrial higher affinity PBR which promotes a continuous supply of cholesterol to the inner mitochondrial side chain cleavage cytochrome P450.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/s0021-9258(17)31762-3</identifier><identifier>PMID: 8071335</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Animals ; Base Sequence ; Carrier Proteins - physiology ; Diazepam Binding Inhibitor ; Humans ; Leydig Cell Tumor ; Leydig Cells - metabolism ; Male ; Mitochondria - metabolism ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Progesterone - biosynthesis ; Rats ; Receptors, GABA-A - physiology ; Tumor Cells, Cultured</subject><ispartof>The Journal of biological chemistry, 1994-09, Vol.269 (35), p.22105-22112</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-619ac3459acbeb8b2bf2453dd2248df70fb28dba45077798afa161d589a1cf713</citedby><cites>FETCH-LOGICAL-c498t-619ac3459acbeb8b2bf2453dd2248df70fb28dba45077798afa161d589a1cf713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8071335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>M Garnier</creatorcontrib><creatorcontrib>N Boujrad</creatorcontrib><creatorcontrib>S O Ogwuegbu</creatorcontrib><creatorcontrib>J R Hudson, Jr</creatorcontrib><creatorcontrib>V Papadopoulos</creatorcontrib><title>The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The polypeptide diazepam binding inhibitor (DBI) and drug ligands for the mitochondrial peripheral-type benzodiazepine receptor (PBR) have been shown to regulate cholesterol transport, the rate-determining step in steroidogenesis, in hormone-responsive steroidogenic cells including the MA-10 Leydig tumor cells. The present study was designed to characterize the role of DBI and PBR in the R2C rat Leydig tumor constitutive steroid-producing cell model. Both DBI and PBR were present in R2C cells. R2C cell treatment with a cholesterol-linked phosphorothioate oligodeoxynucleotide antisense to DBI, but not sense, resulted in the reduction of DBI levels and a concomitant dramatic decrease of the amount of progesterone produced. These observations strongly suggested that DBI was important in maintaining constitutive steroidogenesis in R2C cells. Radioligand binding assays revealed the presence of a single class of PBR binding sites with an affinity 10 times higher (Kd approximately 0.5 nM) than that displayed by the MA-10 PBR (Kd approximately 5 nM). Photolabeling of R2C and MA-10 cell mitochondria with the photoactivatable PBR ligand [3H]1-(2-fluoro-5-nitrophenyl)-N-methyl-N-(1-methyl-propyl)-3- isoquinolinecarboxamide showed that the M(r) 18,000 PBR protein was specifically labeled. This indicates that the R2C cells express a PBR protein which has properties similar to the MA-10 PBR. Chemical crosslinking studies of purified metabolically radiolabeled DBI to mitochondria provided direct evidence that DBI specifically binds to the M(r) 18,000 PBR protein. Moreover, DBI and a PBR synthetic ligand were able to increase steroid production in isolated R2C cell mitochondria which express the 5 nM affinity receptor. However, mitochondrial PBR binding was increased by 6-fold upon addition of the post-mitochondrial fraction, suggesting that a cytosolic factor modulates the binding properties of PBR in R2C cells and is responsible for the 0.5 nM affinity receptor seen in intact cells. In conclusion, these data demonstrate that DBI plays a key role in maintaining R2C constitutive steroidogenesis by binding to the mitochondrial higher affinity PBR which promotes a continuous supply of cholesterol to the inner mitochondrial side chain cleavage cytochrome P450.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Carrier Proteins - physiology</subject><subject>Diazepam Binding Inhibitor</subject><subject>Humans</subject><subject>Leydig Cell Tumor</subject><subject>Leydig Cells - metabolism</subject><subject>Male</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Oligodeoxyribonucleotides</subject><subject>Progesterone - biosynthesis</subject><subject>Rats</subject><subject>Receptors, GABA-A - physiology</subject><subject>Tumor Cells, Cultured</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9UV2L1DAULaKs4-pPWMiDiD5U89E07aMM6wcMCLqCbyFpbqdX2rQmqTL73_xvps6weUgI59xzLucUxQ2jbxll9btIKWdly2Xzmqk3gqmal-JRsWO0EaWQ7MfjYvdAeVo8i_Enzadq2VVx1VDFhJC74u_dAGSZx9MCS0IHxKG5h8VMpUXv0B8J-gEtpjkQ4x0xZMDjAPnT9-gxnciUsW6YvQtoRrJAwCXjZixT1iQW_P181kQPJECXfbJWXGMy6Ek3-5gwrQl_A4kJwoxuPoKHiDFbk5TX-8r35AAnh0eS1ikPdzCOZMx6z4snvRkjvLi818X3D7d3-0_l4cvHz_v3h7Kr2iaVNWtNJyqZbwu2sdz2vJLCOc6rxvWK9pY3zppKUqVU25jesJo52bSGdX1O6rp4ddZdwvxrhZj0hHHbwniY16hVXauGtlUmyjOxC3OMAXq9BJxMOGlG9Vab_rZ1ordONFP6f21a5Lmbi8FqJ3APU5eeMv7yjG_p_8EA2mJOHSbN61YLqTlnVIp_fwmlnw</recordid><startdate>19940902</startdate><enddate>19940902</enddate><creator>M Garnier</creator><creator>N Boujrad</creator><creator>S O Ogwuegbu</creator><creator>J R Hudson, Jr</creator><creator>V Papadopoulos</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19940902</creationdate><title>The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line</title><author>M Garnier ; N Boujrad ; S O Ogwuegbu ; J R Hudson, Jr ; V Papadopoulos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-619ac3459acbeb8b2bf2453dd2248df70fb28dba45077798afa161d589a1cf713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Carrier Proteins - physiology</topic><topic>Diazepam Binding Inhibitor</topic><topic>Humans</topic><topic>Leydig Cell Tumor</topic><topic>Leydig Cells - metabolism</topic><topic>Male</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Oligodeoxyribonucleotides</topic><topic>Progesterone - biosynthesis</topic><topic>Rats</topic><topic>Receptors, GABA-A - physiology</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M Garnier</creatorcontrib><creatorcontrib>N Boujrad</creatorcontrib><creatorcontrib>S O Ogwuegbu</creatorcontrib><creatorcontrib>J R Hudson, Jr</creatorcontrib><creatorcontrib>V Papadopoulos</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M Garnier</au><au>N Boujrad</au><au>S O Ogwuegbu</au><au>J R Hudson, Jr</au><au>V Papadopoulos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1994-09-02</date><risdate>1994</risdate><volume>269</volume><issue>35</issue><spage>22105</spage><epage>22112</epage><pages>22105-22112</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The polypeptide diazepam binding inhibitor (DBI) and drug ligands for the mitochondrial peripheral-type benzodiazepine receptor (PBR) have been shown to regulate cholesterol transport, the rate-determining step in steroidogenesis, in hormone-responsive steroidogenic cells including the MA-10 Leydig tumor cells. The present study was designed to characterize the role of DBI and PBR in the R2C rat Leydig tumor constitutive steroid-producing cell model. Both DBI and PBR were present in R2C cells. R2C cell treatment with a cholesterol-linked phosphorothioate oligodeoxynucleotide antisense to DBI, but not sense, resulted in the reduction of DBI levels and a concomitant dramatic decrease of the amount of progesterone produced. These observations strongly suggested that DBI was important in maintaining constitutive steroidogenesis in R2C cells. Radioligand binding assays revealed the presence of a single class of PBR binding sites with an affinity 10 times higher (Kd approximately 0.5 nM) than that displayed by the MA-10 PBR (Kd approximately 5 nM). Photolabeling of R2C and MA-10 cell mitochondria with the photoactivatable PBR ligand [3H]1-(2-fluoro-5-nitrophenyl)-N-methyl-N-(1-methyl-propyl)-3- isoquinolinecarboxamide showed that the M(r) 18,000 PBR protein was specifically labeled. This indicates that the R2C cells express a PBR protein which has properties similar to the MA-10 PBR. Chemical crosslinking studies of purified metabolically radiolabeled DBI to mitochondria provided direct evidence that DBI specifically binds to the M(r) 18,000 PBR protein. Moreover, DBI and a PBR synthetic ligand were able to increase steroid production in isolated R2C cell mitochondria which express the 5 nM affinity receptor. However, mitochondrial PBR binding was increased by 6-fold upon addition of the post-mitochondrial fraction, suggesting that a cytosolic factor modulates the binding properties of PBR in R2C cells and is responsible for the 0.5 nM affinity receptor seen in intact cells. In conclusion, these data demonstrate that DBI plays a key role in maintaining R2C constitutive steroidogenesis by binding to the mitochondrial higher affinity PBR which promotes a continuous supply of cholesterol to the inner mitochondrial side chain cleavage cytochrome P450.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>8071335</pmid><doi>10.1016/s0021-9258(17)31762-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1994-09, Vol.269 (35), p.22105-22112
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_76678094
source ScienceDirect
subjects Animals
Base Sequence
Carrier Proteins - physiology
Diazepam Binding Inhibitor
Humans
Leydig Cell Tumor
Leydig Cells - metabolism
Male
Mitochondria - metabolism
Molecular Sequence Data
Oligodeoxyribonucleotides
Progesterone - biosynthesis
Rats
Receptors, GABA-A - physiology
Tumor Cells, Cultured
title The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20polypeptide%20diazepam-binding%20inhibitor%20and%20a%20higher%20affinity%20mitochondrial%20peripheral-type%20benzodiazepine%20receptor%20sustain%20constitutive%20steroidogenesis%20in%20the%20R2C%20Leydig%20tumor%20cell%20line&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=M%20Garnier&rft.date=1994-09-02&rft.volume=269&rft.issue=35&rft.spage=22105&rft.epage=22112&rft.pages=22105-22112&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/s0021-9258(17)31762-3&rft_dat=%3Cproquest_cross%3E76678094%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-619ac3459acbeb8b2bf2453dd2248df70fb28dba45077798afa161d589a1cf713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=76678094&rft_id=info:pmid/8071335&rfr_iscdi=true