Loading…
Drive-selection equilibrium: homopolymer evolution in the Drosophila gene mastermind
Interspecific sequence comparison of the highly repetitive Drosophila gene mastermind (mam) reveals extensive length variation in homopolymer domains. The length variation in homopolymers is due to nucleotide misalignment in the underlying triplet repeats, which can lead to slippage mutations during...
Saved in:
Published in: | Journal of molecular evolution 1994-06, Vol.38 (6), p.637-641 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interspecific sequence comparison of the highly repetitive Drosophila gene mastermind (mam) reveals extensive length variation in homopolymer domains. The length variation in homopolymers is due to nucleotide misalignment in the underlying triplet repeats, which can lead to slippage mutations during DNA replication or repair. In mam, the length variation in repetitive regions appears to be balanced by natural selection acting to maintain the distance between two highly conserved charge clusters. Here we report a statistical test of the null hypothesis that the similarity in the amino acid distance between the charge clusters of each species arose by chance. The results suggest that at mam there is a juxtaposition of length variability due to molecular drive and length conservation maintained by natural selection. The analysis of mam allows the extension of current theories of drive-selection interaction to encompass homopolymers. Our model of drive-selection equilibrium suggests that the physical flexibility, length variability, and abundance of homopolymer domains provide an important source of genetic variation for natural populations. |
---|---|
ISSN: | 0022-2844 1432-1432 |
DOI: | 10.1007/BF00175884 |