Loading…
Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks
Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock nu...
Saved in:
Published in: | IEEE transactions on biomedical engineering 1994-08, Vol.41 (8), p.801-804 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33 |
container_end_page | 804 |
container_issue | 8 |
container_start_page | 801 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 41 |
creator | Lerman, B.B. Ng, K.T. Deale, O.C. |
description | Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.< > |
doi_str_mv | 10.1109/10.310095 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_76742384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>310095</ieee_id><sourcerecordid>28732360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EKtPCgi0SkheoEouAn3GyrCoelUZiU9bRtXMzMWTiwXZA8-_rUUZlSVfnXp1P96FDyBvOPnLO2k9FJWes1c_IhmvdVEJL_pxsGONN1YpWvSSXKf0srWpUfUEuTCuMYmJDjls_I0SfjzQMNEeYUx5DBOcddWHuF5dhdkj_-jzSiOmALtMcKE6liKFHOoRYfJh7ChGB9kv0846OfjdWf8KUYYe0x8Hb6KcJsg8zTWNwv9Ir8mKAKeHrs16RH18-399-q7bfv97d3mwrJ1uWK1W-apkTboDaskY6xbS0APb0IiKYWtjBSuck19b00kDNhLR2EEJr1Ut5Ra7XuYcYfi-Ycrf3yWE5ZsawpM7URgnZqP-CojFSyJo9AZSFVLqAH1bQxZBSxKE7RL-HeOw4607BnXQNrrDvzkMXu8f-kTwnVfz3Zx-Sg2koSTmfHjEpmWmUKdjbFfOI-M9ddzwA6BapKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28373245</pqid></control><display><type>article</type><title>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</title><source>IEEE Xplore (Online service)</source><creator>Lerman, B.B. ; Ng, K.T. ; Deale, O.C.</creator><creatorcontrib>Lerman, B.B. ; Ng, K.T. ; Deale, O.C.</creatorcontrib><description>Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.< ></description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/10.310095</identifier><identifier>PMID: 7927402</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Area measurement ; Biological and medical sciences ; Defibrillation ; Dogs ; Electric Conductivity ; Electric Countershock - instrumentation ; Electric Impedance ; Electric shock ; Electrodes ; Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care ; Force measurement ; Intensive care medicine ; Linear Models ; Linearity ; Medical sciences ; Protocols ; Stainless Steel ; Steel ; Testing</subject><ispartof>IEEE transactions on biomedical engineering, 1994-08, Vol.41 (8), p.801-804</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</citedby><cites>FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/310095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3307847$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7927402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lerman, B.B.</creatorcontrib><creatorcontrib>Ng, K.T.</creatorcontrib><creatorcontrib>Deale, O.C.</creatorcontrib><title>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.< ></description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Area measurement</subject><subject>Biological and medical sciences</subject><subject>Defibrillation</subject><subject>Dogs</subject><subject>Electric Conductivity</subject><subject>Electric Countershock - instrumentation</subject><subject>Electric Impedance</subject><subject>Electric shock</subject><subject>Electrodes</subject><subject>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</subject><subject>Force measurement</subject><subject>Intensive care medicine</subject><subject>Linear Models</subject><subject>Linearity</subject><subject>Medical sciences</subject><subject>Protocols</subject><subject>Stainless Steel</subject><subject>Steel</subject><subject>Testing</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS0EKtPCgi0SkheoEouAn3GyrCoelUZiU9bRtXMzMWTiwXZA8-_rUUZlSVfnXp1P96FDyBvOPnLO2k9FJWes1c_IhmvdVEJL_pxsGONN1YpWvSSXKf0srWpUfUEuTCuMYmJDjls_I0SfjzQMNEeYUx5DBOcddWHuF5dhdkj_-jzSiOmALtMcKE6liKFHOoRYfJh7ChGB9kv0846OfjdWf8KUYYe0x8Hb6KcJsg8zTWNwv9Ir8mKAKeHrs16RH18-399-q7bfv97d3mwrJ1uWK1W-apkTboDaskY6xbS0APb0IiKYWtjBSuck19b00kDNhLR2EEJr1Ut5Ra7XuYcYfi-Ycrf3yWE5ZsawpM7URgnZqP-CojFSyJo9AZSFVLqAH1bQxZBSxKE7RL-HeOw4607BnXQNrrDvzkMXu8f-kTwnVfz3Zx-Sg2koSTmfHjEpmWmUKdjbFfOI-M9ddzwA6BapKg</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Lerman, B.B.</creator><creator>Ng, K.T.</creator><creator>Deale, O.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>19940801</creationdate><title>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</title><author>Lerman, B.B. ; Ng, K.T. ; Deale, O.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Area measurement</topic><topic>Biological and medical sciences</topic><topic>Defibrillation</topic><topic>Dogs</topic><topic>Electric Conductivity</topic><topic>Electric Countershock - instrumentation</topic><topic>Electric Impedance</topic><topic>Electric shock</topic><topic>Electrodes</topic><topic>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</topic><topic>Force measurement</topic><topic>Intensive care medicine</topic><topic>Linear Models</topic><topic>Linearity</topic><topic>Medical sciences</topic><topic>Protocols</topic><topic>Stainless Steel</topic><topic>Steel</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerman, B.B.</creatorcontrib><creatorcontrib>Ng, K.T.</creatorcontrib><creatorcontrib>Deale, O.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerman, B.B.</au><au>Ng, K.T.</au><au>Deale, O.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>1994-08-01</date><risdate>1994</risdate><volume>41</volume><issue>8</issue><spage>801</spage><epage>804</epage><pages>801-804</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>7927402</pmid><doi>10.1109/10.310095</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 1994-08, Vol.41 (8), p.801-804 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_proquest_miscellaneous_76742384 |
source | IEEE Xplore (Online service) |
subjects | Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Animals Area measurement Biological and medical sciences Defibrillation Dogs Electric Conductivity Electric Countershock - instrumentation Electric Impedance Electric shock Electrodes Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care Force measurement Intensive care medicine Linear Models Linearity Medical sciences Protocols Stainless Steel Steel Testing |
title | Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearity%20of%20transthoracic%20conductance%20with%20respect%20to%20electrode%20force%20and%20area%20during%20high-voltage%20defibrillation%20shocks&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Lerman,%20B.B.&rft.date=1994-08-01&rft.volume=41&rft.issue=8&rft.spage=801&rft.epage=804&rft.pages=801-804&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/10.310095&rft_dat=%3Cproquest_pubme%3E28732360%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28373245&rft_id=info:pmid/7927402&rft_ieee_id=310095&rfr_iscdi=true |