Loading…

Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks

Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock nu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 1994-08, Vol.41 (8), p.801-804
Main Authors: Lerman, B.B., Ng, K.T., Deale, O.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33
cites cdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33
container_end_page 804
container_issue 8
container_start_page 801
container_title IEEE transactions on biomedical engineering
container_volume 41
creator Lerman, B.B.
Ng, K.T.
Deale, O.C.
description Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.< >
doi_str_mv 10.1109/10.310095
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_76742384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>310095</ieee_id><sourcerecordid>28732360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EKtPCgi0SkheoEouAn3GyrCoelUZiU9bRtXMzMWTiwXZA8-_rUUZlSVfnXp1P96FDyBvOPnLO2k9FJWes1c_IhmvdVEJL_pxsGONN1YpWvSSXKf0srWpUfUEuTCuMYmJDjls_I0SfjzQMNEeYUx5DBOcddWHuF5dhdkj_-jzSiOmALtMcKE6liKFHOoRYfJh7ChGB9kv0846OfjdWf8KUYYe0x8Hb6KcJsg8zTWNwv9Ir8mKAKeHrs16RH18-399-q7bfv97d3mwrJ1uWK1W-apkTboDaskY6xbS0APb0IiKYWtjBSuck19b00kDNhLR2EEJr1Ut5Ra7XuYcYfi-Ycrf3yWE5ZsawpM7URgnZqP-CojFSyJo9AZSFVLqAH1bQxZBSxKE7RL-HeOw4607BnXQNrrDvzkMXu8f-kTwnVfz3Zx-Sg2koSTmfHjEpmWmUKdjbFfOI-M9ddzwA6BapKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28373245</pqid></control><display><type>article</type><title>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</title><source>IEEE Xplore (Online service)</source><creator>Lerman, B.B. ; Ng, K.T. ; Deale, O.C.</creator><creatorcontrib>Lerman, B.B. ; Ng, K.T. ; Deale, O.C.</creatorcontrib><description>Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.&lt; &gt;</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/10.310095</identifier><identifier>PMID: 7927402</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Area measurement ; Biological and medical sciences ; Defibrillation ; Dogs ; Electric Conductivity ; Electric Countershock - instrumentation ; Electric Impedance ; Electric shock ; Electrodes ; Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care ; Force measurement ; Intensive care medicine ; Linear Models ; Linearity ; Medical sciences ; Protocols ; Stainless Steel ; Steel ; Testing</subject><ispartof>IEEE transactions on biomedical engineering, 1994-08, Vol.41 (8), p.801-804</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</citedby><cites>FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/310095$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3307847$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7927402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lerman, B.B.</creatorcontrib><creatorcontrib>Ng, K.T.</creatorcontrib><creatorcontrib>Deale, O.C.</creatorcontrib><title>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.&lt; &gt;</description><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Area measurement</subject><subject>Biological and medical sciences</subject><subject>Defibrillation</subject><subject>Dogs</subject><subject>Electric Conductivity</subject><subject>Electric Countershock - instrumentation</subject><subject>Electric Impedance</subject><subject>Electric shock</subject><subject>Electrodes</subject><subject>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</subject><subject>Force measurement</subject><subject>Intensive care medicine</subject><subject>Linear Models</subject><subject>Linearity</subject><subject>Medical sciences</subject><subject>Protocols</subject><subject>Stainless Steel</subject><subject>Steel</subject><subject>Testing</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS0EKtPCgi0SkheoEouAn3GyrCoelUZiU9bRtXMzMWTiwXZA8-_rUUZlSVfnXp1P96FDyBvOPnLO2k9FJWes1c_IhmvdVEJL_pxsGONN1YpWvSSXKf0srWpUfUEuTCuMYmJDjls_I0SfjzQMNEeYUx5DBOcddWHuF5dhdkj_-jzSiOmALtMcKE6liKFHOoRYfJh7ChGB9kv0846OfjdWf8KUYYe0x8Hb6KcJsg8zTWNwv9Ir8mKAKeHrs16RH18-399-q7bfv97d3mwrJ1uWK1W-apkTboDaskY6xbS0APb0IiKYWtjBSuck19b00kDNhLR2EEJr1Ut5Ra7XuYcYfi-Ycrf3yWE5ZsawpM7URgnZqP-CojFSyJo9AZSFVLqAH1bQxZBSxKE7RL-HeOw4607BnXQNrrDvzkMXu8f-kTwnVfz3Zx-Sg2koSTmfHjEpmWmUKdjbFfOI-M9ddzwA6BapKg</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Lerman, B.B.</creator><creator>Ng, K.T.</creator><creator>Deale, O.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>19940801</creationdate><title>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</title><author>Lerman, B.B. ; Ng, K.T. ; Deale, O.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Area measurement</topic><topic>Biological and medical sciences</topic><topic>Defibrillation</topic><topic>Dogs</topic><topic>Electric Conductivity</topic><topic>Electric Countershock - instrumentation</topic><topic>Electric Impedance</topic><topic>Electric shock</topic><topic>Electrodes</topic><topic>Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care</topic><topic>Force measurement</topic><topic>Intensive care medicine</topic><topic>Linear Models</topic><topic>Linearity</topic><topic>Medical sciences</topic><topic>Protocols</topic><topic>Stainless Steel</topic><topic>Steel</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerman, B.B.</creatorcontrib><creatorcontrib>Ng, K.T.</creatorcontrib><creatorcontrib>Deale, O.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerman, B.B.</au><au>Ng, K.T.</au><au>Deale, O.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>1994-08-01</date><risdate>1994</risdate><volume>41</volume><issue>8</issue><spage>801</spage><epage>804</epage><pages>801-804</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Canine transthoracic conductance (G/sub T/) was measured during high-voltage defibrillation shocks to test the hypothesis that (G/sub T/) is a linear function of electrode force (F) and electrode area (A). Symmetric protocols were used to compensate for changes in (G/sub T/) with respect to shock number (n). Stainless steel electrodes were employed with a force-control system for precise selection and control of both F and A at each shock. For a constant A=60 cm/sup 2/, G/sub T/ was linear (r=0.996, 0.995, 0.971, 0.992, 0.995) over five dogs for 30 N/spl les/F/spl les/70 N. For a constant F=50 N, G/sub T/ was linear (r=0.992, 0.998, 0.994, 0.992) over four dogs for 20 cm/sup 2//spl les/A/spl les/60 cm/sup 2/, and in one dog (r=0.996) for 40 cm/sup 2//spl les/A/spl les/90 cm/sup 2/. The quantitative relationship demonstrated for G/sub T/ and F and A can be used in the design of experiments and interpretation of results used for validation of numerical defibrillation models.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>7927402</pmid><doi>10.1109/10.310095</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 1994-08, Vol.41 (8), p.801-804
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_76742384
source IEEE Xplore (Online service)
subjects Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Area measurement
Biological and medical sciences
Defibrillation
Dogs
Electric Conductivity
Electric Countershock - instrumentation
Electric Impedance
Electric shock
Electrodes
Emergency and intensive cardiocirculatory care. Cardiogenic shock. Coronary intensive care
Force measurement
Intensive care medicine
Linear Models
Linearity
Medical sciences
Protocols
Stainless Steel
Steel
Testing
title Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linearity%20of%20transthoracic%20conductance%20with%20respect%20to%20electrode%20force%20and%20area%20during%20high-voltage%20defibrillation%20shocks&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Lerman,%20B.B.&rft.date=1994-08-01&rft.volume=41&rft.issue=8&rft.spage=801&rft.epage=804&rft.pages=801-804&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/10.310095&rft_dat=%3Cproquest_pubme%3E28732360%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-409590c2cfa6b083c4053baab2531eea762bfb3cc315b7d37a6023bbf22554d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28373245&rft_id=info:pmid/7927402&rft_ieee_id=310095&rfr_iscdi=true