Loading…
Location of M13 Coat Protein in Sodium Dodecyl Sulfate Micelles As Determined by NMR
The major coat protein (gVIIIp) of bacteriophage M13 solubilized in sodium dodecyl sulfate (SDS) detergent micelles was used as a model system to study this protein in the lipid-bound form. In order to probe the position of gVIIIp relative to the SDS micelles, stearate was added, spin-labeled at the...
Saved in:
Published in: | Biochemistry (Easton) 1994-11, Vol.33 (44), p.12990-12997 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The major coat protein (gVIIIp) of bacteriophage M13 solubilized in sodium dodecyl sulfate (SDS) detergent micelles was used as a model system to study this protein in the lipid-bound form. In order to probe the position of gVIIIp relative to the SDS micelles, stearate was added, spin-labeled at the 5- or 16-position with a doxyl group containing a stable nitroxide radical. The average position of the spin-labels in the micelles was derived from the line broadening of the resonances in the 13C spectrum of SDS. Subsequently, we derived a model of the relative position of gVIIIp in the SDS micelle from the effect of the spin-labels on the gVIIIp resonances, monitored via 1H-15N HSQC and TOCSY experiments. The results are consistent with the structure of gVIIIp having two helical strands. One strand is a long hydrophobic helix that spans the micelle, and the other is a shorter amphipathic helix on the surface of the micelle. These results are in good agreement with the structure of gVIIIp in membranes proposed by McDonnell et al. on the basis of solid state NMR data [McDonnell, P. A., Shon, K., Kim, Y., & Opella, S. J. (1993) J. Mol. Biol. 233, 447-463]. This study indicates that high-resolution NMR on this membrane protein, solubilized in detergent micelles, is a very suitable technique for mimicking these proteins in their natural environment. Furthermore, the data indicate that the structure of the micelle near the C-terminus of the major coat protein is distorted. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00248a007 |