Loading…

A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity

Membrane sodium-hydrogen exchangers (NHEs), found in virtually all cell types, appear to have diverse and essential roles in regulating cellular pH and mediating vectorial transport by epithelial cells. However, the functional and physiological role of the recently cloned isoform NHE-4 remains unkno...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1994-11, Vol.269 (47), p.29704-29709
Main Authors: Bookstein, C, Musch, M W, DePaoli, A, Xie, Y, Villereal, M, Rao, M C, Chang, E B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane sodium-hydrogen exchangers (NHEs), found in virtually all cell types, appear to have diverse and essential roles in regulating cellular pH and mediating vectorial transport by epithelial cells. However, the functional and physiological role of the recently cloned isoform NHE-4 remains unknown. Unlike other Na-H exchanger isoforms, NHE-4 transfected into NHE-deficient mutant fibroblasts demonstrated no amiloride-inhibitable sodium uptake, under basal or acid-loaded isoosmotic conditions. By immunoblot analysis, only the NHE-4 transfectants synthesized a 100-kDa protein, which cross-reacted to polyclonal antibody made to an NHE-4 fusion protein. However, when cells were subjected to acute hyperosmolar cell shrinkage conditions, amiloride-sensitive NHE activity was readily detected at 420 mosm, exhibiting maximal activity at 490 mosm. By in situ hybridization, NHE-4 expression in the rat kidney was found to be limited to the inner renal medullary collecting tubules, the region of highest tissue osmolarity fluctuations in the body. We conclude that NHE-4 is an unusual isoform of sodium-hydrogen exchangers that may play a specialized supplementary role in cell volume regulation.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)43937-3