Loading…
Electrical Activity and Calcium Channels in Neuroendocrine Cells
Similar to neuronal cells, neuroendocrine cells express voltage-dependent ion channels and fire action potentials. Ca2+ influx through voltage-dependent Ca2+ channels couples changes in membrane potential to Ca(2+)-dependent cellular processes, such as hormone release. Using the patch-clamp techniqu...
Saved in:
Published in: | Annals of the New York Academy of Sciences 1994-09, Vol.733 (1), p.335-339 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Similar to neuronal cells, neuroendocrine cells express voltage-dependent ion channels and fire action potentials. Ca2+ influx through voltage-dependent Ca2+ channels couples changes in membrane potential to Ca(2+)-dependent cellular processes, such as hormone release. Using the patch-clamp technique, we studied the spontaneous electrical activity as well as voltage-dependent Ca2+ channels in cholecystokinin-producing pancreatic cells (RIN 1056E cell line), in prolactin-secreting pituitary cells (GH3 cell line), and in calcitonin-secreting cells of the thyroid (rMTC 44-2 cell line). All three cell types displayed spontaneous electrical activity, that is, they spontaneously produced action potentials. RIN 1056E cells, GH3 cells, and rMTC cells exhibited (various types of) voltage-dependent Ca2+ channels that were regulated by various neurotransmitters and hormones, such as somatostatin. |
---|---|
ISSN: | 0077-8923 1749-6632 |
DOI: | 10.1111/j.1749-6632.1994.tb17283.x |