Loading…
Suppression of Neurite Elongation and Growth Cone Motility by Electrical Activity
Electrical activity may regulate a number of neuronal functions in addition to its role in transmitting signals along nerve cells. The hypothesis that electrical activity affects neurite elongation in sprouting neurons was tested by stimulating individual snail neurons isolated in cell culture. The...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1986-06, Vol.232 (4758), p.1638-1640 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrical activity may regulate a number of neuronal functions in addition to its role in transmitting signals along nerve cells. The hypothesis that electrical activity affects neurite elongation in sprouting neurons was tested by stimulating individual snail neurons isolated in cell culture. The findings demonstrated that growth cone advance, and thus neurite elongation, is reversibly stopped during periods when action potentials are experimentally evoked. A decrease in filopodial number and growth cone area was also observed. Thus, action potentials can mediate the cessation of neurite outgrowth and thereby may influence structure and connectivity within the nervous system. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.3715470 |