Loading…

Suppression of Neurite Elongation and Growth Cone Motility by Electrical Activity

Electrical activity may regulate a number of neuronal functions in addition to its role in transmitting signals along nerve cells. The hypothesis that electrical activity affects neurite elongation in sprouting neurons was tested by stimulating individual snail neurons isolated in cell culture. The...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 1986-06, Vol.232 (4758), p.1638-1640
Main Authors: Cohan, Christopher S., Kater, Stanley B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c559t-ff37bebbe0bd1e58a1ae196df17822098ad6a623d246f20924f628de808089433
cites cdi_FETCH-LOGICAL-c559t-ff37bebbe0bd1e58a1ae196df17822098ad6a623d246f20924f628de808089433
container_end_page 1640
container_issue 4758
container_start_page 1638
container_title Science (American Association for the Advancement of Science)
container_volume 232
creator Cohan, Christopher S.
Kater, Stanley B.
description Electrical activity may regulate a number of neuronal functions in addition to its role in transmitting signals along nerve cells. The hypothesis that electrical activity affects neurite elongation in sprouting neurons was tested by stimulating individual snail neurons isolated in cell culture. The findings demonstrated that growth cone advance, and thus neurite elongation, is reversibly stopped during periods when action potentials are experimentally evoked. A decrease in filopodial number and growth cone area was also observed. Thus, action potentials can mediate the cessation of neurite outgrowth and thereby may influence structure and connectivity within the nervous system.
doi_str_mv 10.1126/science.3715470
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_76875110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1697267</jstor_id><sourcerecordid>1697267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-ff37bebbe0bd1e58a1ae196df17822098ad6a623d246f20924f628de808089433</originalsourceid><addsrcrecordid>eNqFkc1r3DAQxUVoSbdpzrm0YELozYk-rK9jWJK0kLSUtmcjy6NUi9faSnLL_vfRdk0CvSw6CM376c0wD6Ezgi8JoeIqWQ-jhUsmCW8kPkILgjWvNcXsFVpgzEStsORv0NuUVhgXTbNjdDzjC_Tt-7TZREjJh7EKrvoCU_QZqpshjI8m76pm7Ku7GP7mX9UyjFA9hOwHn7dVty0Y2By9NUN1bbP_U8rv0GtnhgSn832Cft7e_Fh-qu-_3n1eXt_XlnOda-eY7KDrAHc9Aa4MMUC06B2RilKslemFEZT1tBGuvGnjBFU9KFyObhg7QR_3vpsYfk-Qcrv2ycIwmBHClFoplOSE4IMgE7RhVNODICWECykOg6RpGqzIbsbz_8BVmOJY1lLMGKdKKV2gqz1kY0gpgms30a9N3LYEt7uQ2znkdk6t_Pgw207dGvpn_kW_mHWTSjQumtH69IwpzCUVsmDv99gq5RBfugr9T34Cguq4Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213528889</pqid></control><display><type>article</type><title>Suppression of Neurite Elongation and Growth Cone Motility by Electrical Activity</title><source>Science Online科学在线</source><creator>Cohan, Christopher S. ; Kater, Stanley B.</creator><creatorcontrib>Cohan, Christopher S. ; Kater, Stanley B.</creatorcontrib><description>Electrical activity may regulate a number of neuronal functions in addition to its role in transmitting signals along nerve cells. The hypothesis that electrical activity affects neurite elongation in sprouting neurons was tested by stimulating individual snail neurons isolated in cell culture. The findings demonstrated that growth cone advance, and thus neurite elongation, is reversibly stopped during periods when action potentials are experimentally evoked. A decrease in filopodial number and growth cone area was also observed. Thus, action potentials can mediate the cessation of neurite outgrowth and thereby may influence structure and connectivity within the nervous system.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.3715470</identifier><identifier>PMID: 3715470</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: The American Association for the Advancement of Science</publisher><subject>Action Potentials ; Axons - physiology ; Biological and medical sciences ; Cell culture techniques ; Cells, Cultured ; Electricity ; Electrophysiology ; Fundamental and applied biological sciences. Psychology ; Ganglia ; Growth cones ; Helisoma ; Invertebrates ; Mollusca ; Nervous system ; Neurites ; Neurons ; Neurons - physiology ; Neuroscience ; Physiology. Development ; Pipettes ; Pseudopodia ; Snails ; Synapses - physiology ; Virology</subject><ispartof>Science (American Association for the Advancement of Science), 1986-06, Vol.232 (4758), p.1638-1640</ispartof><rights>Copyright 1986 The American Association for the Advancement of Science</rights><rights>1987 INIST-CNRS</rights><rights>Copyright American Association for the Advancement of Science Jun 27, 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-ff37bebbe0bd1e58a1ae196df17822098ad6a623d246f20924f628de808089433</citedby><cites>FETCH-LOGICAL-c559t-ff37bebbe0bd1e58a1ae196df17822098ad6a623d246f20924f628de808089433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8057267$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3715470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohan, Christopher S.</creatorcontrib><creatorcontrib>Kater, Stanley B.</creatorcontrib><title>Suppression of Neurite Elongation and Growth Cone Motility by Electrical Activity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Electrical activity may regulate a number of neuronal functions in addition to its role in transmitting signals along nerve cells. The hypothesis that electrical activity affects neurite elongation in sprouting neurons was tested by stimulating individual snail neurons isolated in cell culture. The findings demonstrated that growth cone advance, and thus neurite elongation, is reversibly stopped during periods when action potentials are experimentally evoked. A decrease in filopodial number and growth cone area was also observed. Thus, action potentials can mediate the cessation of neurite outgrowth and thereby may influence structure and connectivity within the nervous system.</description><subject>Action Potentials</subject><subject>Axons - physiology</subject><subject>Biological and medical sciences</subject><subject>Cell culture techniques</subject><subject>Cells, Cultured</subject><subject>Electricity</subject><subject>Electrophysiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia</subject><subject>Growth cones</subject><subject>Helisoma</subject><subject>Invertebrates</subject><subject>Mollusca</subject><subject>Nervous system</subject><subject>Neurites</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Physiology. Development</subject><subject>Pipettes</subject><subject>Pseudopodia</subject><subject>Snails</subject><subject>Synapses - physiology</subject><subject>Virology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkc1r3DAQxUVoSbdpzrm0YELozYk-rK9jWJK0kLSUtmcjy6NUi9faSnLL_vfRdk0CvSw6CM376c0wD6Ezgi8JoeIqWQ-jhUsmCW8kPkILgjWvNcXsFVpgzEStsORv0NuUVhgXTbNjdDzjC_Tt-7TZREjJh7EKrvoCU_QZqpshjI8m76pm7Ku7GP7mX9UyjFA9hOwHn7dVty0Y2By9NUN1bbP_U8rv0GtnhgSn832Cft7e_Fh-qu-_3n1eXt_XlnOda-eY7KDrAHc9Aa4MMUC06B2RilKslemFEZT1tBGuvGnjBFU9KFyObhg7QR_3vpsYfk-Qcrv2ycIwmBHClFoplOSE4IMgE7RhVNODICWECykOg6RpGqzIbsbz_8BVmOJY1lLMGKdKKV2gqz1kY0gpgms30a9N3LYEt7uQ2znkdk6t_Pgw207dGvpn_kW_mHWTSjQumtH69IwpzCUVsmDv99gq5RBfugr9T34Cguq4Ow</recordid><startdate>19860627</startdate><enddate>19860627</enddate><creator>Cohan, Christopher S.</creator><creator>Kater, Stanley B.</creator><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19860627</creationdate><title>Suppression of Neurite Elongation and Growth Cone Motility by Electrical Activity</title><author>Cohan, Christopher S. ; Kater, Stanley B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-ff37bebbe0bd1e58a1ae196df17822098ad6a623d246f20924f628de808089433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Action Potentials</topic><topic>Axons - physiology</topic><topic>Biological and medical sciences</topic><topic>Cell culture techniques</topic><topic>Cells, Cultured</topic><topic>Electricity</topic><topic>Electrophysiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia</topic><topic>Growth cones</topic><topic>Helisoma</topic><topic>Invertebrates</topic><topic>Mollusca</topic><topic>Nervous system</topic><topic>Neurites</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Physiology. Development</topic><topic>Pipettes</topic><topic>Pseudopodia</topic><topic>Snails</topic><topic>Synapses - physiology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohan, Christopher S.</creatorcontrib><creatorcontrib>Kater, Stanley B.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohan, Christopher S.</au><au>Kater, Stanley B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of Neurite Elongation and Growth Cone Motility by Electrical Activity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1986-06-27</date><risdate>1986</risdate><volume>232</volume><issue>4758</issue><spage>1638</spage><epage>1640</epage><pages>1638-1640</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Electrical activity may regulate a number of neuronal functions in addition to its role in transmitting signals along nerve cells. The hypothesis that electrical activity affects neurite elongation in sprouting neurons was tested by stimulating individual snail neurons isolated in cell culture. The findings demonstrated that growth cone advance, and thus neurite elongation, is reversibly stopped during periods when action potentials are experimentally evoked. A decrease in filopodial number and growth cone area was also observed. Thus, action potentials can mediate the cessation of neurite outgrowth and thereby may influence structure and connectivity within the nervous system.</abstract><cop>Washington, DC</cop><pub>The American Association for the Advancement of Science</pub><pmid>3715470</pmid><doi>10.1126/science.3715470</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1986-06, Vol.232 (4758), p.1638-1640
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_76875110
source Science Online科学在线
subjects Action Potentials
Axons - physiology
Biological and medical sciences
Cell culture techniques
Cells, Cultured
Electricity
Electrophysiology
Fundamental and applied biological sciences. Psychology
Ganglia
Growth cones
Helisoma
Invertebrates
Mollusca
Nervous system
Neurites
Neurons
Neurons - physiology
Neuroscience
Physiology. Development
Pipettes
Pseudopodia
Snails
Synapses - physiology
Virology
title Suppression of Neurite Elongation and Growth Cone Motility by Electrical Activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20Neurite%20Elongation%20and%20Growth%20Cone%20Motility%20by%20Electrical%20Activity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cohan,%20Christopher%20S.&rft.date=1986-06-27&rft.volume=232&rft.issue=4758&rft.spage=1638&rft.epage=1640&rft.pages=1638-1640&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.3715470&rft_dat=%3Cjstor_proqu%3E1697267%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-ff37bebbe0bd1e58a1ae196df17822098ad6a623d246f20924f628de808089433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213528889&rft_id=info:pmid/3715470&rft_jstor_id=1697267&rfr_iscdi=true