Loading…
Central Leptin Infusion Attenuates the Cardiovascular and Metabolic Effects of Fasting in Rats
The role of reduced leptin signaling in the regulation of cardiovascular responses to negative energy balance is not known. We tested the hypothesis that central infusion of leptin would attenuate the cardiovascular and metabolic responses to fasting. Male Sprague-Dawley rats, instrumented with tele...
Saved in:
Published in: | Hypertension (Dallas, Tex. 1979) Tex. 1979), 2001-02, Vol.37 (2, Part 2 Suppl), p.663-669 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4758-fb4f419f71915afffbb0d41edd61f26c50f17060b128f73218c220856bcae8063 |
---|---|
cites | cdi_FETCH-LOGICAL-c4758-fb4f419f71915afffbb0d41edd61f26c50f17060b128f73218c220856bcae8063 |
container_end_page | 669 |
container_issue | 2, Part 2 Suppl |
container_start_page | 663 |
container_title | Hypertension (Dallas, Tex. 1979) |
container_volume | 37 |
creator | Overton, James Michael Williams, Todd Dennis Chambers, James Bradley Rashotte, Michael Edward |
description | The role of reduced leptin signaling in the regulation of cardiovascular responses to negative energy balance is not known. We tested the hypothesis that central infusion of leptin would attenuate the cardiovascular and metabolic responses to fasting. Male Sprague-Dawley rats, instrumented with telemetry devices and intracerebroventricular cannulas, were housed in metabolic chambers for continuous (24 hours) measurement of dark-phase (active) and light-phase (inactive) mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient. Rats received central infusions of either saline (0.5 μL/h) or leptin (42 ng/h) for 6 days through osmotic pumps and were either fed ad libitum or were fasted for 48 hours followed by refeeding for 4 days. In ad lib animals, continuous intracerebroventricular leptin infusion significantly reduced caloric intake, body weight, and respiratory quotient compared with saline controls while having no effect on mean arterial pressure or heart rate. Fasting reduced mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient in rats receiving saline infusions. Fasting-induced reductions in mean arterial pressure were specific to the active phase and were not attenuated by central leptin infusion. In contrast, intracerebroventricular leptin, at a dose that had no cardiovascular effects in ad lib control animals, completely prevented fasting-induced decreases in light-phase heart rate and oxygen consumption and blunted fasting-induced reductions in dark-phase heart rate and oxygen consumption. The results are consistent with the hypothesis that reductions in central leptin signaling contribute to the integrated cardiovascular and metabolic responses to acute caloric deprivation. |
doi_str_mv | 10.1161/01.hyp.37.2.663 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76978182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76978182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4758-fb4f419f71915afffbb0d41edd61f26c50f17060b128f73218c220856bcae8063</originalsourceid><addsrcrecordid>eNpd0dGLFCEcB3CJotuunnsLKeht5vypozOPx3LXHWwUUVAvieNoO5ermzod99_nsktBPijIxy8_viL0EkgLIOCCQLt92LdMtrQVgj1CK-gob3gn2GO0IjDwZgD4eoae5XxHCHDO5VN0BkAZYR1boe9rG0rSHm_svswB3wa35DkGfFmKDYsuNuOytXit0zTH3zqbxeuEdZjwe1v0GP1s8JVz1pSMo8PXOteYH7hGfdIlP0dPnPbZvjid5-jL9dXn9U2z-fDudn25aQyXXd-4kTsOg5MwQKedc-NIJg52mgQ4KkxHHEgiyAi0d5JR6A2lpO_EaLTtiWDn6O0xd5_ir8XmonZzNtZ7HWxcspJikD30tMLX_8G7uKRQZ1OUdAwOsRVdHJFJMedkndqneafTgwKiDr0rAurm20fFpKKq9l5fvDrFLuPOTv_8qegK3pxArVB7l3Qwc_7rBj5QIFXxo7qPvtiUf_rl3ia1tdqXrSJ1cSr6htafJIetqTddz_4A7RqZdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205312208</pqid></control><display><type>article</type><title>Central Leptin Infusion Attenuates the Cardiovascular and Metabolic Effects of Fasting in Rats</title><source>EZB Electronic Journals Library</source><creator>Overton, James Michael ; Williams, Todd Dennis ; Chambers, James Bradley ; Rashotte, Michael Edward</creator><creatorcontrib>Overton, James Michael ; Williams, Todd Dennis ; Chambers, James Bradley ; Rashotte, Michael Edward</creatorcontrib><description>The role of reduced leptin signaling in the regulation of cardiovascular responses to negative energy balance is not known. We tested the hypothesis that central infusion of leptin would attenuate the cardiovascular and metabolic responses to fasting. Male Sprague-Dawley rats, instrumented with telemetry devices and intracerebroventricular cannulas, were housed in metabolic chambers for continuous (24 hours) measurement of dark-phase (active) and light-phase (inactive) mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient. Rats received central infusions of either saline (0.5 μL/h) or leptin (42 ng/h) for 6 days through osmotic pumps and were either fed ad libitum or were fasted for 48 hours followed by refeeding for 4 days. In ad lib animals, continuous intracerebroventricular leptin infusion significantly reduced caloric intake, body weight, and respiratory quotient compared with saline controls while having no effect on mean arterial pressure or heart rate. Fasting reduced mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient in rats receiving saline infusions. Fasting-induced reductions in mean arterial pressure were specific to the active phase and were not attenuated by central leptin infusion. In contrast, intracerebroventricular leptin, at a dose that had no cardiovascular effects in ad lib control animals, completely prevented fasting-induced decreases in light-phase heart rate and oxygen consumption and blunted fasting-induced reductions in dark-phase heart rate and oxygen consumption. The results are consistent with the hypothesis that reductions in central leptin signaling contribute to the integrated cardiovascular and metabolic responses to acute caloric deprivation.</description><identifier>ISSN: 0194-911X</identifier><identifier>EISSN: 1524-4563</identifier><identifier>DOI: 10.1161/01.hyp.37.2.663</identifier><identifier>PMID: 11230353</identifier><identifier>CODEN: HPRTDN</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Animals ; Biological and medical sciences ; Blood Pressure - drug effects ; Blood vessels and receptors ; Body Weight - drug effects ; Cardiovascular System - drug effects ; Cardiovascular System - physiopathology ; Energy Intake - drug effects ; Fasting - metabolism ; Fasting - physiology ; Fundamental and applied biological sciences. Psychology ; Heart Rate - drug effects ; Infusion Pumps, Implantable ; Injections, Intraventricular ; Leptin - administration & dosage ; Leptin - pharmacology ; Male ; Oxygen Consumption - drug effects ; Rats ; Rats, Sprague-Dawley ; Vertebrates: cardiovascular system</subject><ispartof>Hypertension (Dallas, Tex. 1979), 2001-02, Vol.37 (2, Part 2 Suppl), p.663-669</ispartof><rights>2001 American Heart Association, Inc.</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Feb 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4758-fb4f419f71915afffbb0d41edd61f26c50f17060b128f73218c220856bcae8063</citedby><cites>FETCH-LOGICAL-c4758-fb4f419f71915afffbb0d41edd61f26c50f17060b128f73218c220856bcae8063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=949210$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11230353$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Overton, James Michael</creatorcontrib><creatorcontrib>Williams, Todd Dennis</creatorcontrib><creatorcontrib>Chambers, James Bradley</creatorcontrib><creatorcontrib>Rashotte, Michael Edward</creatorcontrib><title>Central Leptin Infusion Attenuates the Cardiovascular and Metabolic Effects of Fasting in Rats</title><title>Hypertension (Dallas, Tex. 1979)</title><addtitle>Hypertension</addtitle><description>The role of reduced leptin signaling in the regulation of cardiovascular responses to negative energy balance is not known. We tested the hypothesis that central infusion of leptin would attenuate the cardiovascular and metabolic responses to fasting. Male Sprague-Dawley rats, instrumented with telemetry devices and intracerebroventricular cannulas, were housed in metabolic chambers for continuous (24 hours) measurement of dark-phase (active) and light-phase (inactive) mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient. Rats received central infusions of either saline (0.5 μL/h) or leptin (42 ng/h) for 6 days through osmotic pumps and were either fed ad libitum or were fasted for 48 hours followed by refeeding for 4 days. In ad lib animals, continuous intracerebroventricular leptin infusion significantly reduced caloric intake, body weight, and respiratory quotient compared with saline controls while having no effect on mean arterial pressure or heart rate. Fasting reduced mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient in rats receiving saline infusions. Fasting-induced reductions in mean arterial pressure were specific to the active phase and were not attenuated by central leptin infusion. In contrast, intracerebroventricular leptin, at a dose that had no cardiovascular effects in ad lib control animals, completely prevented fasting-induced decreases in light-phase heart rate and oxygen consumption and blunted fasting-induced reductions in dark-phase heart rate and oxygen consumption. The results are consistent with the hypothesis that reductions in central leptin signaling contribute to the integrated cardiovascular and metabolic responses to acute caloric deprivation.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure - drug effects</subject><subject>Blood vessels and receptors</subject><subject>Body Weight - drug effects</subject><subject>Cardiovascular System - drug effects</subject><subject>Cardiovascular System - physiopathology</subject><subject>Energy Intake - drug effects</subject><subject>Fasting - metabolism</subject><subject>Fasting - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heart Rate - drug effects</subject><subject>Infusion Pumps, Implantable</subject><subject>Injections, Intraventricular</subject><subject>Leptin - administration & dosage</subject><subject>Leptin - pharmacology</subject><subject>Male</subject><subject>Oxygen Consumption - drug effects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Vertebrates: cardiovascular system</subject><issn>0194-911X</issn><issn>1524-4563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpd0dGLFCEcB3CJotuunnsLKeht5vypozOPx3LXHWwUUVAvieNoO5ermzod99_nsktBPijIxy8_viL0EkgLIOCCQLt92LdMtrQVgj1CK-gob3gn2GO0IjDwZgD4eoae5XxHCHDO5VN0BkAZYR1boe9rG0rSHm_svswB3wa35DkGfFmKDYsuNuOytXit0zTH3zqbxeuEdZjwe1v0GP1s8JVz1pSMo8PXOteYH7hGfdIlP0dPnPbZvjid5-jL9dXn9U2z-fDudn25aQyXXd-4kTsOg5MwQKedc-NIJg52mgQ4KkxHHEgiyAi0d5JR6A2lpO_EaLTtiWDn6O0xd5_ir8XmonZzNtZ7HWxcspJikD30tMLX_8G7uKRQZ1OUdAwOsRVdHJFJMedkndqneafTgwKiDr0rAurm20fFpKKq9l5fvDrFLuPOTv_8qegK3pxArVB7l3Qwc_7rBj5QIFXxo7qPvtiUf_rl3ia1tdqXrSJ1cSr6htafJIetqTddz_4A7RqZdw</recordid><startdate>200102</startdate><enddate>200102</enddate><creator>Overton, James Michael</creator><creator>Williams, Todd Dennis</creator><creator>Chambers, James Bradley</creator><creator>Rashotte, Michael Edward</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>200102</creationdate><title>Central Leptin Infusion Attenuates the Cardiovascular and Metabolic Effects of Fasting in Rats</title><author>Overton, James Michael ; Williams, Todd Dennis ; Chambers, James Bradley ; Rashotte, Michael Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4758-fb4f419f71915afffbb0d41edd61f26c50f17060b128f73218c220856bcae8063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure - drug effects</topic><topic>Blood vessels and receptors</topic><topic>Body Weight - drug effects</topic><topic>Cardiovascular System - drug effects</topic><topic>Cardiovascular System - physiopathology</topic><topic>Energy Intake - drug effects</topic><topic>Fasting - metabolism</topic><topic>Fasting - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heart Rate - drug effects</topic><topic>Infusion Pumps, Implantable</topic><topic>Injections, Intraventricular</topic><topic>Leptin - administration & dosage</topic><topic>Leptin - pharmacology</topic><topic>Male</topic><topic>Oxygen Consumption - drug effects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Overton, James Michael</creatorcontrib><creatorcontrib>Williams, Todd Dennis</creatorcontrib><creatorcontrib>Chambers, James Bradley</creatorcontrib><creatorcontrib>Rashotte, Michael Edward</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Overton, James Michael</au><au>Williams, Todd Dennis</au><au>Chambers, James Bradley</au><au>Rashotte, Michael Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central Leptin Infusion Attenuates the Cardiovascular and Metabolic Effects of Fasting in Rats</atitle><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle><addtitle>Hypertension</addtitle><date>2001-02</date><risdate>2001</risdate><volume>37</volume><issue>2, Part 2 Suppl</issue><spage>663</spage><epage>669</epage><pages>663-669</pages><issn>0194-911X</issn><eissn>1524-4563</eissn><coden>HPRTDN</coden><abstract>The role of reduced leptin signaling in the regulation of cardiovascular responses to negative energy balance is not known. We tested the hypothesis that central infusion of leptin would attenuate the cardiovascular and metabolic responses to fasting. Male Sprague-Dawley rats, instrumented with telemetry devices and intracerebroventricular cannulas, were housed in metabolic chambers for continuous (24 hours) measurement of dark-phase (active) and light-phase (inactive) mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient. Rats received central infusions of either saline (0.5 μL/h) or leptin (42 ng/h) for 6 days through osmotic pumps and were either fed ad libitum or were fasted for 48 hours followed by refeeding for 4 days. In ad lib animals, continuous intracerebroventricular leptin infusion significantly reduced caloric intake, body weight, and respiratory quotient compared with saline controls while having no effect on mean arterial pressure or heart rate. Fasting reduced mean arterial pressure, heart rate, oxygen consumption, and respiratory quotient in rats receiving saline infusions. Fasting-induced reductions in mean arterial pressure were specific to the active phase and were not attenuated by central leptin infusion. In contrast, intracerebroventricular leptin, at a dose that had no cardiovascular effects in ad lib control animals, completely prevented fasting-induced decreases in light-phase heart rate and oxygen consumption and blunted fasting-induced reductions in dark-phase heart rate and oxygen consumption. The results are consistent with the hypothesis that reductions in central leptin signaling contribute to the integrated cardiovascular and metabolic responses to acute caloric deprivation.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>11230353</pmid><doi>10.1161/01.hyp.37.2.663</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0194-911X |
ispartof | Hypertension (Dallas, Tex. 1979), 2001-02, Vol.37 (2, Part 2 Suppl), p.663-669 |
issn | 0194-911X 1524-4563 |
language | eng |
recordid | cdi_proquest_miscellaneous_76978182 |
source | EZB Electronic Journals Library |
subjects | Animals Biological and medical sciences Blood Pressure - drug effects Blood vessels and receptors Body Weight - drug effects Cardiovascular System - drug effects Cardiovascular System - physiopathology Energy Intake - drug effects Fasting - metabolism Fasting - physiology Fundamental and applied biological sciences. Psychology Heart Rate - drug effects Infusion Pumps, Implantable Injections, Intraventricular Leptin - administration & dosage Leptin - pharmacology Male Oxygen Consumption - drug effects Rats Rats, Sprague-Dawley Vertebrates: cardiovascular system |
title | Central Leptin Infusion Attenuates the Cardiovascular and Metabolic Effects of Fasting in Rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20Leptin%20Infusion%20Attenuates%20the%20Cardiovascular%20and%20Metabolic%20Effects%20of%20Fasting%20in%20Rats&rft.jtitle=Hypertension%20(Dallas,%20Tex.%201979)&rft.au=Overton,%20James%20Michael&rft.date=2001-02&rft.volume=37&rft.issue=2,%20Part%202%20Suppl&rft.spage=663&rft.epage=669&rft.pages=663-669&rft.issn=0194-911X&rft.eissn=1524-4563&rft.coden=HPRTDN&rft_id=info:doi/10.1161/01.hyp.37.2.663&rft_dat=%3Cproquest_cross%3E76978182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4758-fb4f419f71915afffbb0d41edd61f26c50f17060b128f73218c220856bcae8063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205312208&rft_id=info:pmid/11230353&rfr_iscdi=true |