Loading…

Mitogenic and Antiapoptotic Actions of Hepatocyte Growth Factor Through ERK, STAT3, and Akt in Endothelial Cells

Hepatocyte growth factor (HGF), a member of the angiogenic growth factors, may play a pivotal role in the regulation of endothelial cells, inasmuch as HGF shows mitogenic and antiapoptotic actions in endothelial cells. Because the mechanism of these actions is still unclear, we examined the signal t...

Full description

Saved in:
Bibliographic Details
Published in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2001-02, Vol.37 (2, Part 2 Suppl), p.581-586
Main Authors: Nakagami, Hironori, Morishita, Ryuichi, Yamamoto, Kei, Taniyama, Yoshiaki, Aoki, Motokuni, Matsumoto, Kunio, Nakamura, Toshikazu, Kaneda, Yasufumi, Horiuchi, Masatsugu, Ogihara, Toshio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hepatocyte growth factor (HGF), a member of the angiogenic growth factors, may play a pivotal role in the regulation of endothelial cells, inasmuch as HGF shows mitogenic and antiapoptotic actions in endothelial cells. Because the mechanism of these actions is still unclear, we examined the signal transduction system of HGF in human aortic endothelial cells. Treatment of endothelial cells with recombinant HGF (rHGF) resulted in a significant increase in DNA synthesis as assessed by thymidine incorporation. Importantly, phosphorylation of extracellular signal–related kinase (ERK) and Akt by rHGF was clearly observed. Thus, we further examined the effects of specific inhibitors of ERK or Akt on cell proliferation. Pretreatment with PD98059, a mitogen-activated protein kinase kinase inhibitor, significantly attenuated cell proliferation induced by rHGF, whereas inhibitors of phosphatidylinositol-3-OH kinase, wortmannin, and LY-294002, did not. Interestingly, treatment with rHGF significantly increased the phosphorylation of the signal transducers and activators of transcription (STAT)3 (Ser727), whereas PD98059 attenuated the phosphorylation of Ser727 induced by rHGF. In addition, treatment with rHGF significantly increased the promoter activity of c-fos, which includes the sis-inducible element and serum response element, whereas PD98059 completely attenuated the activation of the c-fos promoter induced by rHGF. In contrast, inhibition of Akt by wortmannin and LY-294002 failed to inhibit the phosphorylation of STAT3 and c-fos activation. On the other hand, treatment with rHGF attenuated the increase in LDH release and caspase-3 activity induced by tumor necrosis factor-α stimulation. In contrast to DNA synthesis, wortmannin and LY-294002 markedly attenuated the decrease in caspase-3 activity mediated by rHGF, whereas PD98059 did not. Overall, the present study demonstrated that HGF stimulated cell proliferation through the ERK-STAT3 (Ser727) pathway and had an antiapoptotic action through the phosphatidylinositol-3-OH kinase–Akt pathway in human aortic endothelial cells. These findings provide new perspectives in the role of HGF in cardiovascular disease.
ISSN:0194-911X
1524-4563
DOI:10.1161/01.hyp.37.2.581