Loading…

Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1‐like genes controlling both floral meristem and floral organ identity in different plant species

Summary APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sep...

Full description

Saved in:
Bibliographic Details
Published in:The Plant journal : for cell and molecular biology 2001-02, Vol.25 (4), p.441-451
Main Authors: Berbel, Ana, Navarro, Cristina, Ferrándiz, Cristina, Cañas, Luis Antonio, Madueño, Francisco, Beltrán, José‐Pío
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4894-f2d56f7ca68105ca49a8e8a8ae3bb724c3ed630c2920ad62bebf7a98fee8504c3
cites cdi_FETCH-LOGICAL-c4894-f2d56f7ca68105ca49a8e8a8ae3bb724c3ed630c2920ad62bebf7a98fee8504c3
container_end_page 451
container_issue 4
container_start_page 441
container_title The Plant journal : for cell and molecular biology
container_volume 25
creator Berbel, Ana
Navarro, Cristina
Ferrándiz, Cristina
Cañas, Luis Antonio
Madueño, Francisco
Beltrán, José‐Pío
description Summary APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA‐functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1‐like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA‐functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C‐terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence‐to‐flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1‐1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.
doi_str_mv 10.1046/j.1365-313x.2001.00974.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76988306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76988306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4894-f2d56f7ca68105ca49a8e8a8ae3bb724c3ed630c2920ad62bebf7a98fee8504c3</originalsourceid><addsrcrecordid>eNqNkcGO0zAQQCMEYsvCL6CRkDhtix0njiNxqVYLC1pED4vEzXKccevixMFORHvjE_iU_Sa-BJd24QgXjz3zZsbSyzKgZEFJwV9tF5Txcs4o2y1yQuiCkLoqFrsH2ey-8PlhNiM1J_OqoPlZ9iTGbQIrxovH2RmlOSclIbPsbtkrt482gjewulp-KC5g3CAMqGC5omCmXo_WJwg2vvPOrye8gDgNgw9jBAWdb9GB8eGA__z-w9kvCGvsMYL2_Ri8c7ZfQ-PHDRjnQxrUYbBxxA5U397nfFirHmyL_WjHPdgeWmsMhvSGwal0xgG1xfg0e2SUi_jsFM-zT2-ubi-v5zcf3767XN7MdSHqYm7ytuSm0ooLSkqtiloJFEooZE1T5YVm2HJGdF7nRLU8b7AxlaqFQRQlSeXz7OVx7hD81wnjKDsbNbr0F_RTlBWvhWCE_xOklagIF2UCxRHUwccY0Mgh2E6FvaREHrTKrTzYkwet8qBV_tYqd6n1-WnH1HTY_m08eUzAixOgolbOBNVrG_9wNWWsYol6faS-WYf7_14vb1fv04X9Ahr8wdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17870685</pqid></control><display><type>article</type><title>Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1‐like genes controlling both floral meristem and floral organ identity in different plant species</title><source>Wiley</source><source>EZB Electronic Journals Library</source><creator>Berbel, Ana ; Navarro, Cristina ; Ferrándiz, Cristina ; Cañas, Luis Antonio ; Madueño, Francisco ; Beltrán, José‐Pío</creator><creatorcontrib>Berbel, Ana ; Navarro, Cristina ; Ferrándiz, Cristina ; Cañas, Luis Antonio ; Madueño, Francisco ; Beltrán, José‐Pío</creatorcontrib><description>Summary APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA‐functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1‐like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA‐functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C‐terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence‐to‐flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1‐1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1046/j.1365-313x.2001.00974.x</identifier><identifier>PMID: 11260500</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Antirrhinum ; AP1 gene ; APETALA1 ; Arabidopsis ; A‐function ; Base Sequence ; Biological and medical sciences ; Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation ; DNA Primers ; Economic plant physiology ; floral initiation ; Flowering, floral biology, reproduction patterns ; Fundamental and applied biological sciences. Psychology ; Genotype ; Growth and development ; Homeodomain Proteins - chemistry ; Homeodomain Proteins - genetics ; Homeodomain Proteins - physiology ; In Situ Hybridization ; Meristem - growth &amp; development ; Molecular Sequence Data ; pea floral development ; PEAM4 gene ; Phenotype ; pim mutant ; Pisum sativum - genetics ; Plant physiology and development ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - physiology ; Sequence Homology, Amino Acid ; Species Specificity ; SQUAMOSA ; SQUAMOSA gene ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>The Plant journal : for cell and molecular biology, 2001-02, Vol.25 (4), p.441-451</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4894-f2d56f7ca68105ca49a8e8a8ae3bb724c3ed630c2920ad62bebf7a98fee8504c3</citedby><cites>FETCH-LOGICAL-c4894-f2d56f7ca68105ca49a8e8a8ae3bb724c3ed630c2920ad62bebf7a98fee8504c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=913373$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11260500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berbel, Ana</creatorcontrib><creatorcontrib>Navarro, Cristina</creatorcontrib><creatorcontrib>Ferrándiz, Cristina</creatorcontrib><creatorcontrib>Cañas, Luis Antonio</creatorcontrib><creatorcontrib>Madueño, Francisco</creatorcontrib><creatorcontrib>Beltrán, José‐Pío</creatorcontrib><title>Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1‐like genes controlling both floral meristem and floral organ identity in different plant species</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA‐functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1‐like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA‐functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C‐terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence‐to‐flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1‐1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Antirrhinum</subject><subject>AP1 gene</subject><subject>APETALA1</subject><subject>Arabidopsis</subject><subject>A‐function</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</subject><subject>DNA Primers</subject><subject>Economic plant physiology</subject><subject>floral initiation</subject><subject>Flowering, floral biology, reproduction patterns</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genotype</subject><subject>Growth and development</subject><subject>Homeodomain Proteins - chemistry</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - physiology</subject><subject>In Situ Hybridization</subject><subject>Meristem - growth &amp; development</subject><subject>Molecular Sequence Data</subject><subject>pea floral development</subject><subject>PEAM4 gene</subject><subject>Phenotype</subject><subject>pim mutant</subject><subject>Pisum sativum - genetics</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - physiology</subject><subject>Sequence Homology, Amino Acid</subject><subject>Species Specificity</subject><subject>SQUAMOSA</subject><subject>SQUAMOSA gene</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkcGO0zAQQCMEYsvCL6CRkDhtix0njiNxqVYLC1pED4vEzXKccevixMFORHvjE_iU_Sa-BJd24QgXjz3zZsbSyzKgZEFJwV9tF5Txcs4o2y1yQuiCkLoqFrsH2ey-8PlhNiM1J_OqoPlZ9iTGbQIrxovH2RmlOSclIbPsbtkrt482gjewulp-KC5g3CAMqGC5omCmXo_WJwg2vvPOrye8gDgNgw9jBAWdb9GB8eGA__z-w9kvCGvsMYL2_Ri8c7ZfQ-PHDRjnQxrUYbBxxA5U397nfFirHmyL_WjHPdgeWmsMhvSGwal0xgG1xfg0e2SUi_jsFM-zT2-ubi-v5zcf3767XN7MdSHqYm7ytuSm0ooLSkqtiloJFEooZE1T5YVm2HJGdF7nRLU8b7AxlaqFQRQlSeXz7OVx7hD81wnjKDsbNbr0F_RTlBWvhWCE_xOklagIF2UCxRHUwccY0Mgh2E6FvaREHrTKrTzYkwet8qBV_tYqd6n1-WnH1HTY_m08eUzAixOgolbOBNVrG_9wNWWsYol6faS-WYf7_14vb1fv04X9Ahr8wdI</recordid><startdate>200102</startdate><enddate>200102</enddate><creator>Berbel, Ana</creator><creator>Navarro, Cristina</creator><creator>Ferrándiz, Cristina</creator><creator>Cañas, Luis Antonio</creator><creator>Madueño, Francisco</creator><creator>Beltrán, José‐Pío</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200102</creationdate><title>Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1‐like genes controlling both floral meristem and floral organ identity in different plant species</title><author>Berbel, Ana ; Navarro, Cristina ; Ferrándiz, Cristina ; Cañas, Luis Antonio ; Madueño, Francisco ; Beltrán, José‐Pío</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4894-f2d56f7ca68105ca49a8e8a8ae3bb724c3ed630c2920ad62bebf7a98fee8504c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Antirrhinum</topic><topic>AP1 gene</topic><topic>APETALA1</topic><topic>Arabidopsis</topic><topic>A‐function</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation</topic><topic>DNA Primers</topic><topic>Economic plant physiology</topic><topic>floral initiation</topic><topic>Flowering, floral biology, reproduction patterns</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genotype</topic><topic>Growth and development</topic><topic>Homeodomain Proteins - chemistry</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - physiology</topic><topic>In Situ Hybridization</topic><topic>Meristem - growth &amp; development</topic><topic>Molecular Sequence Data</topic><topic>pea floral development</topic><topic>PEAM4 gene</topic><topic>Phenotype</topic><topic>pim mutant</topic><topic>Pisum sativum - genetics</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - physiology</topic><topic>Sequence Homology, Amino Acid</topic><topic>Species Specificity</topic><topic>SQUAMOSA</topic><topic>SQUAMOSA gene</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berbel, Ana</creatorcontrib><creatorcontrib>Navarro, Cristina</creatorcontrib><creatorcontrib>Ferrándiz, Cristina</creatorcontrib><creatorcontrib>Cañas, Luis Antonio</creatorcontrib><creatorcontrib>Madueño, Francisco</creatorcontrib><creatorcontrib>Beltrán, José‐Pío</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berbel, Ana</au><au>Navarro, Cristina</au><au>Ferrándiz, Cristina</au><au>Cañas, Luis Antonio</au><au>Madueño, Francisco</au><au>Beltrán, José‐Pío</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1‐like genes controlling both floral meristem and floral organ identity in different plant species</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2001-02</date><risdate>2001</risdate><volume>25</volume><issue>4</issue><spage>441</spage><epage>451</epage><pages>441-451</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA‐functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1‐like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA‐functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C‐terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence‐to‐flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1‐1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11260500</pmid><doi>10.1046/j.1365-313x.2001.00974.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2001-02, Vol.25 (4), p.441-451
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_76988306
source Wiley; EZB Electronic Journals Library
subjects Agronomy. Soil science and plant productions
Amino Acid Sequence
Antirrhinum
AP1 gene
APETALA1
Arabidopsis
A‐function
Base Sequence
Biological and medical sciences
Biology and morphogenesis of the reproductive apparatus. Photoperiodism, vernalisation
DNA Primers
Economic plant physiology
floral initiation
Flowering, floral biology, reproduction patterns
Fundamental and applied biological sciences. Psychology
Genotype
Growth and development
Homeodomain Proteins - chemistry
Homeodomain Proteins - genetics
Homeodomain Proteins - physiology
In Situ Hybridization
Meristem - growth & development
Molecular Sequence Data
pea floral development
PEAM4 gene
Phenotype
pim mutant
Pisum sativum - genetics
Plant physiology and development
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - physiology
Sequence Homology, Amino Acid
Species Specificity
SQUAMOSA
SQUAMOSA gene
Vegetative and sexual reproduction, floral biology, fructification
title Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1‐like genes controlling both floral meristem and floral organ identity in different plant species
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20PEAM4,%20the%20pea%20AP1%20functional%20homologue,%20supports%20a%20model%20for%20AP1%E2%80%90like%20genes%20controlling%20both%20floral%20meristem%20and%20floral%20organ%20identity%20in%20different%20plant%20species&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Berbel,%20Ana&rft.date=2001-02&rft.volume=25&rft.issue=4&rft.spage=441&rft.epage=451&rft.pages=441-451&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1046/j.1365-313x.2001.00974.x&rft_dat=%3Cproquest_cross%3E76988306%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4894-f2d56f7ca68105ca49a8e8a8ae3bb724c3ed630c2920ad62bebf7a98fee8504c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17870685&rft_id=info:pmid/11260500&rfr_iscdi=true