Loading…

Quantitative trait loci mapping associated with plant regeneration ability from seed derived calli in rice (Oryza sativa L.)

Quantitative trait loci (QTLs), which are associated with the ability of plant regeneration from seed derived calli, were detected using a recombinant inbred (RI) population from a cross between 'Milyang 23 (toingil)' and 'Gihobyeo (japonica)' in rice (Oryza sativa L.). A tongil...

Full description

Saved in:
Bibliographic Details
Published in:Molecules and cells 2001-02, Vol.11 (1), p.64-67
Main Authors: Kwon, Y S, Kim, K M, Eun, M Y, Sohn, J K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantitative trait loci (QTLs), which are associated with the ability of plant regeneration from seed derived calli, were detected using a recombinant inbred (RI) population from a cross between 'Milyang 23 (toingil)' and 'Gihobyeo (japonica)' in rice (Oryza sativa L.). A tongil type cultivar, 'Milyang 23', has a lower frequency of callus induction and plant regeneration than those of japonica 'Gihobyeo'. Transgressive segregations were observed for the callus induction rate and plant regeneration ability from seed derived calli of the RI population. An interval mapping analysis was used to identify the QTL controlling the plant regeneration ability. Two QTLs for the callus induction rate were detected on chromosomes 1 and 2, explaining the 10.9% total phenotypic variation. Four QTLs that are associated with the plant regeneration ability were located on chromosomes 2, 3, and 11, accounting for 25.7% of the total phenotypic variation.
ISSN:1016-8478
DOI:10.1016/S1016-8478(23)17004-X