Loading…

Gene Expression Profile of Antithrombotic Protein C Defines New Mechanisms Modulating Inflammation and Apoptosis

Human protein C is a natural anticoagulant factor, and a recombinant activated form of the molecule (rhAPC) is completing clinical evaluation for treatment of severe sepsis. Because of the pathophysiologic role of endothelial dysfunction in severe inflammatory disease and sepsis, we explored the pos...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-04, Vol.276 (14), p.11199-11203
Main Authors: Joyce, David E., Gelbert, Larry, Ciaccia, Angelina, DeHoff, Brad, Grinnell, Brian W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human protein C is a natural anticoagulant factor, and a recombinant activated form of the molecule (rhAPC) is completing clinical evaluation for treatment of severe sepsis. Because of the pathophysiologic role of endothelial dysfunction in severe inflammatory disease and sepsis, we explored the possibility that rhAPC might directly modulate endothelial function, independent of its anticoagulant activity. Using broad transcriptional profiling, we show that rhAPC directly modulates patterns of endothelial cell gene expression clustering into anti-inflammatory and cell survival pathways. rhAPC directly suppressed expression of p50 and p52 NFκB subunits, resulting in a functional decrease in NFκB binding at target sites. Further, rhAPC blocked expression of downstream NFκB regulated genes following tumor necrosis factor α induction, including dose-dependent suppression of cell adhesion expression and functional binding of intracellular adhesion molecule 1, vascular cell adhesion molecule 1, and E-selectin. Further, rhAPC modulated several genes in the endothelial apoptosis pathway, including the Bcl-2 homologue protein and inhibitor of apoptosis protein. These pathway changes resulted in the ability of rhAPC to inhibit the induction of apoptosis by the potent inducer, staurosporine. This new mechanistic understanding of endothelial regulation and the modulation of tumor necrosis factor-induced endothelial dysfunction creates a novel link between coagulation, inflammation, and cell death and provides insight into the molecular basis for the efficacy of APC in systemic inflammation and sepsis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.C100017200