Loading…

Experimental and computational mapping of the binding surface of a crystalline protein

Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked i...

Full description

Saved in:
Bibliographic Details
Published in:Protein engineering 2001-01, Vol.14 (1), p.47-59
Main Authors: English, Andrew C., Groom, Colin R., Hubbard, Roderick E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3
cites cdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3
container_end_page 59
container_issue 1
container_start_page 47
container_title Protein engineering
container_volume 14
creator English, Andrew C.
Groom, Colin R.
Hubbard, Roderick E.
description Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN.
doi_str_mv 10.1093/protein/14.1.47
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77027673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/14.1.47</oup_id><sourcerecordid>20466828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</originalsourceid><addsrcrecordid>eNqNkctP3DAQxi1UVBbomRuKeuihUnbHj_hxRJSylUBcoEK9WF5nUgJ5YScS_Pd4u1Er9dKexjP6zTeebwg5obCkYPhqCP2IdbeiYkmXQu2RBRUSckb5_TuyACbN9m0OyGGMjwCgwbD35IBSppVUekG-X7wMGOoWu9E1mevKzPftMI1urPsuVVo3DHX3M-urbHzAbFN35TaNU6icx23ZZT68xtTd1B1m84eOyX7lmogf5nhE7r5e3J6v86uby2_nZ1e5FwbG3BdOQ1HKigOrlNvAhmrkhS8YlxWUXBgjnUal0YPipWMIolBFqYwyUHrkR-TTTjfNfZ4wjrato8emcR32U7RKAUuL8n-CDISUmukEfvwLfOynkKxIDCuENvBLbbWDfOhjDFjZIXnowqulYLeHsbMPlgpLrVCp43SWnTYtln_4-RIJ-LwD-mn4D7V8B9dxxJffuAtPNi2rCru-_2El5bdf1lLaa_4GqKqoSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225489073</pqid></control><display><type>article</type><title>Experimental and computational mapping of the binding surface of a crystalline protein</title><source>Oxford Journals Online</source><creator>English, Andrew C. ; Groom, Colin R. ; Hubbard, Roderick E.</creator><creatorcontrib>English, Andrew C. ; Groom, Colin R. ; Hubbard, Roderick E.</creatorcontrib><description>Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN.</description><identifier>ISSN: 0269-2139</identifier><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1460-213X</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/14.1.47</identifier><identifier>PMID: 11287678</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetone - antagonists &amp; inhibitors ; Acetonitriles - antagonists &amp; inhibitors ; Binding Sites ; Computer-Aided Design ; Crystallography, X-Ray ; Drug Design ; Hydrogen Bonding ; inhibitors ; Ligands ; Models, Molecular ; Molecular Structure ; organic solvent ; Phenol - antagonists &amp; inhibitors ; Protease Inhibitors - chemistry ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Solvents ; Static Electricity ; structure-based drug design ; Thermodynamics ; Thermolysin - chemistry ; Water - chemistry ; X-ray crystallography</subject><ispartof>Protein engineering, 2001-01, Vol.14 (1), p.47-59</ispartof><rights>Oxford University Press 2001</rights><rights>Copyright Oxford University Press(England) Jan 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</citedby><cites>FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11287678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>English, Andrew C.</creatorcontrib><creatorcontrib>Groom, Colin R.</creatorcontrib><creatorcontrib>Hubbard, Roderick E.</creatorcontrib><title>Experimental and computational mapping of the binding surface of a crystalline protein</title><title>Protein engineering</title><addtitle>Protein Eng</addtitle><addtitle>Protein Eng</addtitle><description>Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN.</description><subject>Acetone - antagonists &amp; inhibitors</subject><subject>Acetonitriles - antagonists &amp; inhibitors</subject><subject>Binding Sites</subject><subject>Computer-Aided Design</subject><subject>Crystallography, X-Ray</subject><subject>Drug Design</subject><subject>Hydrogen Bonding</subject><subject>inhibitors</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>organic solvent</subject><subject>Phenol - antagonists &amp; inhibitors</subject><subject>Protease Inhibitors - chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Solvents</subject><subject>Static Electricity</subject><subject>structure-based drug design</subject><subject>Thermodynamics</subject><subject>Thermolysin - chemistry</subject><subject>Water - chemistry</subject><subject>X-ray crystallography</subject><issn>0269-2139</issn><issn>1741-0126</issn><issn>1460-213X</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkctP3DAQxi1UVBbomRuKeuihUnbHj_hxRJSylUBcoEK9WF5nUgJ5YScS_Pd4u1Er9dKexjP6zTeebwg5obCkYPhqCP2IdbeiYkmXQu2RBRUSckb5_TuyACbN9m0OyGGMjwCgwbD35IBSppVUekG-X7wMGOoWu9E1mevKzPftMI1urPsuVVo3DHX3M-urbHzAbFN35TaNU6icx23ZZT68xtTd1B1m84eOyX7lmogf5nhE7r5e3J6v86uby2_nZ1e5FwbG3BdOQ1HKigOrlNvAhmrkhS8YlxWUXBgjnUal0YPipWMIolBFqYwyUHrkR-TTTjfNfZ4wjrato8emcR32U7RKAUuL8n-CDISUmukEfvwLfOynkKxIDCuENvBLbbWDfOhjDFjZIXnowqulYLeHsbMPlgpLrVCp43SWnTYtln_4-RIJ-LwD-mn4D7V8B9dxxJffuAtPNi2rCru-_2El5bdf1lLaa_4GqKqoSA</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>English, Andrew C.</creator><creator>Groom, Colin R.</creator><creator>Hubbard, Roderick E.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>Experimental and computational mapping of the binding surface of a crystalline protein</title><author>English, Andrew C. ; Groom, Colin R. ; Hubbard, Roderick E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acetone - antagonists &amp; inhibitors</topic><topic>Acetonitriles - antagonists &amp; inhibitors</topic><topic>Binding Sites</topic><topic>Computer-Aided Design</topic><topic>Crystallography, X-Ray</topic><topic>Drug Design</topic><topic>Hydrogen Bonding</topic><topic>inhibitors</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>organic solvent</topic><topic>Phenol - antagonists &amp; inhibitors</topic><topic>Protease Inhibitors - chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Solvents</topic><topic>Static Electricity</topic><topic>structure-based drug design</topic><topic>Thermodynamics</topic><topic>Thermolysin - chemistry</topic><topic>Water - chemistry</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>English, Andrew C.</creatorcontrib><creatorcontrib>Groom, Colin R.</creatorcontrib><creatorcontrib>Hubbard, Roderick E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Protein engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>English, Andrew C.</au><au>Groom, Colin R.</au><au>Hubbard, Roderick E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational mapping of the binding surface of a crystalline protein</atitle><jtitle>Protein engineering</jtitle><stitle>Protein Eng</stitle><addtitle>Protein Eng</addtitle><date>2001-01</date><risdate>2001</risdate><volume>14</volume><issue>1</issue><spage>47</spage><epage>59</epage><pages>47-59</pages><issn>0269-2139</issn><issn>1741-0126</issn><eissn>1460-213X</eissn><eissn>1741-0134</eissn><abstract>Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11287678</pmid><doi>10.1093/protein/14.1.47</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-2139
ispartof Protein engineering, 2001-01, Vol.14 (1), p.47-59
issn 0269-2139
1741-0126
1460-213X
1741-0134
language eng
recordid cdi_proquest_miscellaneous_77027673
source Oxford Journals Online
subjects Acetone - antagonists & inhibitors
Acetonitriles - antagonists & inhibitors
Binding Sites
Computer-Aided Design
Crystallography, X-Ray
Drug Design
Hydrogen Bonding
inhibitors
Ligands
Models, Molecular
Molecular Structure
organic solvent
Phenol - antagonists & inhibitors
Protease Inhibitors - chemistry
Protein Binding
Protein Conformation
Protein Structure, Secondary
Solvents
Static Electricity
structure-based drug design
Thermodynamics
Thermolysin - chemistry
Water - chemistry
X-ray crystallography
title Experimental and computational mapping of the binding surface of a crystalline protein
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20mapping%20of%20the%20binding%20surface%20of%20a%20crystalline%20protein&rft.jtitle=Protein%20engineering&rft.au=English,%20Andrew%20C.&rft.date=2001-01&rft.volume=14&rft.issue=1&rft.spage=47&rft.epage=59&rft.pages=47-59&rft.issn=0269-2139&rft.eissn=1460-213X&rft_id=info:doi/10.1093/protein/14.1.47&rft_dat=%3Cproquest_cross%3E20466828%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=225489073&rft_id=info:pmid/11287678&rft_oup_id=10.1093/protein/14.1.47&rfr_iscdi=true