Loading…
Experimental and computational mapping of the binding surface of a crystalline protein
Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked i...
Saved in:
Published in: | Protein engineering 2001-01, Vol.14 (1), p.47-59 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3 |
container_end_page | 59 |
container_issue | 1 |
container_start_page | 47 |
container_title | Protein engineering |
container_volume | 14 |
creator | English, Andrew C. Groom, Colin R. Hubbard, Roderick E. |
description | Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN. |
doi_str_mv | 10.1093/protein/14.1.47 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77027673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/14.1.47</oup_id><sourcerecordid>20466828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</originalsourceid><addsrcrecordid>eNqNkctP3DAQxi1UVBbomRuKeuihUnbHj_hxRJSylUBcoEK9WF5nUgJ5YScS_Pd4u1Er9dKexjP6zTeebwg5obCkYPhqCP2IdbeiYkmXQu2RBRUSckb5_TuyACbN9m0OyGGMjwCgwbD35IBSppVUekG-X7wMGOoWu9E1mevKzPftMI1urPsuVVo3DHX3M-urbHzAbFN35TaNU6icx23ZZT68xtTd1B1m84eOyX7lmogf5nhE7r5e3J6v86uby2_nZ1e5FwbG3BdOQ1HKigOrlNvAhmrkhS8YlxWUXBgjnUal0YPipWMIolBFqYwyUHrkR-TTTjfNfZ4wjrato8emcR32U7RKAUuL8n-CDISUmukEfvwLfOynkKxIDCuENvBLbbWDfOhjDFjZIXnowqulYLeHsbMPlgpLrVCp43SWnTYtln_4-RIJ-LwD-mn4D7V8B9dxxJffuAtPNi2rCru-_2El5bdf1lLaa_4GqKqoSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225489073</pqid></control><display><type>article</type><title>Experimental and computational mapping of the binding surface of a crystalline protein</title><source>Oxford Journals Online</source><creator>English, Andrew C. ; Groom, Colin R. ; Hubbard, Roderick E.</creator><creatorcontrib>English, Andrew C. ; Groom, Colin R. ; Hubbard, Roderick E.</creatorcontrib><description>Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN.</description><identifier>ISSN: 0269-2139</identifier><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1460-213X</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/14.1.47</identifier><identifier>PMID: 11287678</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Acetone - antagonists & inhibitors ; Acetonitriles - antagonists & inhibitors ; Binding Sites ; Computer-Aided Design ; Crystallography, X-Ray ; Drug Design ; Hydrogen Bonding ; inhibitors ; Ligands ; Models, Molecular ; Molecular Structure ; organic solvent ; Phenol - antagonists & inhibitors ; Protease Inhibitors - chemistry ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Solvents ; Static Electricity ; structure-based drug design ; Thermodynamics ; Thermolysin - chemistry ; Water - chemistry ; X-ray crystallography</subject><ispartof>Protein engineering, 2001-01, Vol.14 (1), p.47-59</ispartof><rights>Oxford University Press 2001</rights><rights>Copyright Oxford University Press(England) Jan 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</citedby><cites>FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11287678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>English, Andrew C.</creatorcontrib><creatorcontrib>Groom, Colin R.</creatorcontrib><creatorcontrib>Hubbard, Roderick E.</creatorcontrib><title>Experimental and computational mapping of the binding surface of a crystalline protein</title><title>Protein engineering</title><addtitle>Protein Eng</addtitle><addtitle>Protein Eng</addtitle><description>Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN.</description><subject>Acetone - antagonists & inhibitors</subject><subject>Acetonitriles - antagonists & inhibitors</subject><subject>Binding Sites</subject><subject>Computer-Aided Design</subject><subject>Crystallography, X-Ray</subject><subject>Drug Design</subject><subject>Hydrogen Bonding</subject><subject>inhibitors</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>organic solvent</subject><subject>Phenol - antagonists & inhibitors</subject><subject>Protease Inhibitors - chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Solvents</subject><subject>Static Electricity</subject><subject>structure-based drug design</subject><subject>Thermodynamics</subject><subject>Thermolysin - chemistry</subject><subject>Water - chemistry</subject><subject>X-ray crystallography</subject><issn>0269-2139</issn><issn>1741-0126</issn><issn>1460-213X</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkctP3DAQxi1UVBbomRuKeuihUnbHj_hxRJSylUBcoEK9WF5nUgJ5YScS_Pd4u1Er9dKexjP6zTeebwg5obCkYPhqCP2IdbeiYkmXQu2RBRUSckb5_TuyACbN9m0OyGGMjwCgwbD35IBSppVUekG-X7wMGOoWu9E1mevKzPftMI1urPsuVVo3DHX3M-urbHzAbFN35TaNU6icx23ZZT68xtTd1B1m84eOyX7lmogf5nhE7r5e3J6v86uby2_nZ1e5FwbG3BdOQ1HKigOrlNvAhmrkhS8YlxWUXBgjnUal0YPipWMIolBFqYwyUHrkR-TTTjfNfZ4wjrato8emcR32U7RKAUuL8n-CDISUmukEfvwLfOynkKxIDCuENvBLbbWDfOhjDFjZIXnowqulYLeHsbMPlgpLrVCp43SWnTYtln_4-RIJ-LwD-mn4D7V8B9dxxJffuAtPNi2rCru-_2El5bdf1lLaa_4GqKqoSA</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>English, Andrew C.</creator><creator>Groom, Colin R.</creator><creator>Hubbard, Roderick E.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>Experimental and computational mapping of the binding surface of a crystalline protein</title><author>English, Andrew C. ; Groom, Colin R. ; Hubbard, Roderick E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acetone - antagonists & inhibitors</topic><topic>Acetonitriles - antagonists & inhibitors</topic><topic>Binding Sites</topic><topic>Computer-Aided Design</topic><topic>Crystallography, X-Ray</topic><topic>Drug Design</topic><topic>Hydrogen Bonding</topic><topic>inhibitors</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>organic solvent</topic><topic>Phenol - antagonists & inhibitors</topic><topic>Protease Inhibitors - chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Solvents</topic><topic>Static Electricity</topic><topic>structure-based drug design</topic><topic>Thermodynamics</topic><topic>Thermolysin - chemistry</topic><topic>Water - chemistry</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>English, Andrew C.</creatorcontrib><creatorcontrib>Groom, Colin R.</creatorcontrib><creatorcontrib>Hubbard, Roderick E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Protein engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>English, Andrew C.</au><au>Groom, Colin R.</au><au>Hubbard, Roderick E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and computational mapping of the binding surface of a crystalline protein</atitle><jtitle>Protein engineering</jtitle><stitle>Protein Eng</stitle><addtitle>Protein Eng</addtitle><date>2001-01</date><risdate>2001</risdate><volume>14</volume><issue>1</issue><spage>47</spage><epage>59</epage><pages>47-59</pages><issn>0269-2139</issn><issn>1741-0126</issn><eissn>1460-213X</eissn><eissn>1741-0134</eissn><abstract>Multiple Solvent Crystal Structures (MSCS) is a crystallographic technique to identify energetically favorable positions and orientations of small organic molecules on the surface of proteins. We determined the high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 50–70% acetone, 50–80% acetonitrile and 50 mM phenol. The structures of the protein in the aqueous–organic mixtures are essentially the same as the native enzyme and a number of solvent interaction sites were identified. The distribution of probe molecules shows clusters in the main specificity pocket of the active site and a buried subsite. Within the active site, we compared the experimentally determined solvent positions with predictions from two computational functional group mapping techniques, GRID and Multiple Copy Simultaneous Search (MCSS). The experimentally determined small molecule positions are consistent with the structures of known protein–ligand complexes of TLN.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11287678</pmid><doi>10.1093/protein/14.1.47</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2139 |
ispartof | Protein engineering, 2001-01, Vol.14 (1), p.47-59 |
issn | 0269-2139 1741-0126 1460-213X 1741-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_77027673 |
source | Oxford Journals Online |
subjects | Acetone - antagonists & inhibitors Acetonitriles - antagonists & inhibitors Binding Sites Computer-Aided Design Crystallography, X-Ray Drug Design Hydrogen Bonding inhibitors Ligands Models, Molecular Molecular Structure organic solvent Phenol - antagonists & inhibitors Protease Inhibitors - chemistry Protein Binding Protein Conformation Protein Structure, Secondary Solvents Static Electricity structure-based drug design Thermodynamics Thermolysin - chemistry Water - chemistry X-ray crystallography |
title | Experimental and computational mapping of the binding surface of a crystalline protein |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20computational%20mapping%20of%20the%20binding%20surface%20of%20a%20crystalline%20protein&rft.jtitle=Protein%20engineering&rft.au=English,%20Andrew%20C.&rft.date=2001-01&rft.volume=14&rft.issue=1&rft.spage=47&rft.epage=59&rft.pages=47-59&rft.issn=0269-2139&rft.eissn=1460-213X&rft_id=info:doi/10.1093/protein/14.1.47&rft_dat=%3Cproquest_cross%3E20466828%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-c5a805d6f302f7ab0b18e35c5236f0d34996a8e78ec073da2e04575d79790dce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=225489073&rft_id=info:pmid/11287678&rft_oup_id=10.1093/protein/14.1.47&rfr_iscdi=true |