Loading…
Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh
Glycinebetaine is an important osmoprotectant in bacteria, plants, and animals, but only little information is available on the synthesis of glycinebetaine in tree plants. Among four mangrove species, glycinebetaine could be detected only in Avicennia marina. Pinitol was the main osmoprotectant in t...
Saved in:
Published in: | Plant molecular biology 2001-02, Vol.45 (3), p.353-363 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycinebetaine is an important osmoprotectant in bacteria, plants, and animals, but only little information is available on the synthesis of glycinebetaine in tree plants. Among four mangrove species, glycinebetaine could be detected only in Avicennia marina. Pinitol was the main osmoprotectant in the other three species. The level of glycinebetaine in A. marina increased under high salinity. Betaine-aldehyde dehydrogenase (BADH) was detected in all four species, but choline monooxygenase could not be detected. A cDNA library was constructed from the leaves of A. marina. Two kinds of BADH cDNAs were isolated, one homologous to the spinach chloroplast BADH, and the other with unique residues SKL at the end of C-terminus. The BADH transcription levels of the former were higher than those of the latter. The levels of the former BADH increased at high salinity whereas those of the latter were independent of salinity. BADHs were expressed in Escherichia coli and purified. Two kinds of A. marina BADHs exhibited similar kinetic and stability properties, but were significantly different from those of spinach BADH. A. marina BADHs efficiently catalyzed the oxidation of betainealdehyde, but not the oxidation of omega-aminoaldehydes and were more stable at high temperature than the spinach BADH. |
---|---|
ISSN: | 0167-4412 1573-5028 |
DOI: | 10.1023/A:1006497113323 |