Loading…

Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136

Streptococcus macedonicus is a Gram positive lactic acid bacterium that is part of the starter flora present in Greek sheep and goat cheeses. The S. macedonicus Sc136 strain produces a high-molecular-mass, highly texturizing exopolysaccharide composed of D-glucose, D-galactose, and N-acetyl-D-glucos...

Full description

Saved in:
Bibliographic Details
Published in:Glycobiology (Oxford) 2001-02, Vol.11 (2), p.131-139
Main Authors: Vincent, S J, Faber, E J, Neeser, J R, Stingele, F, Kamerling, J P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Streptococcus macedonicus is a Gram positive lactic acid bacterium that is part of the starter flora present in Greek sheep and goat cheeses. The S. macedonicus Sc136 strain produces a high-molecular-mass, highly texturizing exopolysaccharide composed of D-glucose, D-galactose, and N-acetyl-D-glucosamine in the molar ratio of 3:2:1. The structure of the exopolysaccharide produced by S. macedonicus Sc136 was determined by chemical analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy. The repeating unit was shown to be: (see text) The polysaccharide sidechain beta-D-Galf-(1-->6)-beta-D-Glcp-(1-->6)-beta-D-GlcpNAc is a key factor in the highly texturizing properties of the S.macedonicus Sc136 exopolysaccharide. Finally, the trisaccharide sequence beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp corresponds to the internal backbone of the lacto-N-tetraose and lacto-N-neotetraose units, which serve as a structural basis for the large majority of human milk oligosaccharides, an additional property offering an important potential for the development of improved infant nutrition products.
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/11.2.131