Loading…
Characterization of the Glycosaminoglycan-Binding Region of Lactoferrin
Lactoferrin is a prominent component of neutrophil secondary granules and its blood concentration is increased in certain inflammatory diseases. Although the biochemical characterization of lactoferrin as an iron-binding protein has been well described, its physiological role in inflammation remains...
Saved in:
Published in: | Archives of biochemistry and biophysics 1995-02, Vol.317 (1), p.85-92 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lactoferrin is a prominent component of neutrophil secondary granules and its blood concentration is increased in certain inflammatory diseases. Although the biochemical characterization of lactoferrin as an iron-binding protein has been well described, its physiological role in inflammation remains undefined. We examined the ability of lactoferrin to regulate glycosaminoglycan-accelerated thrombin-serine protease inhibitor (serpin) reactions. Lactoferrin effectively reduced the rate of thrombin-serpin (antithrombin and heparin cofactor II) reactions by three physiological glycosaminoglycans including heparin, heparan sulfate, and dermatan sulfate. An enzyme kinetics analysis showed that lactoferrin did not alter the apparent heparin-thrombin or the heparin-antithrombin dissociation constant values for the heparin-catalyzed thrombin-antithrombin reaction. However, the maximum reaction velocity at saturation with respect to either protein was markedly decreased by lactoferrin. The glycosaminoglycan-binding region of lactoferrin was analyzed following limited proteolysis using
Staphylococcus aureus V
8 protease. Two lactoferrin fragments with
M
r′s of ∼8 and ∼11 kDa were purified based on their affinity to heparin-Sepharose. Amino acid sequence analysis demonstrated that both peptides were from the N-terminus. Although slightly less capable compared to intact lactoferrin, the lactoferrin peptides effectively neutralized heparin, heparan sulfate, and dermatan sulfate-catalyzed serpin-thrombin inhibition reactions. In addition, lactoferrin N-terminal peptides have approximately the same binding affinity to heparin-Sepharose as that of intact lactoferrin. Inspection of both the N-terminal amino acid sequence and the crystal structure of lactoferrin further supports the conclusion that lactoferrin is a novel glycosaminoglycan binding protein and that the putative glycosaminoglycan-binding site is localized to the N-terminus. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1006/abbi.1995.1139 |