Loading…

Cultured incisors display major modifications in basal lamina deposition without further effect on odontoblast differentiation

Matrix-mediated epithelio-mesenchymal interactions play a crucial role in the control of dental cytodifferentiations. Ultrastructural observation of the epithelio-mesenchymal junction in cultured embryonic mouse molars showed discrete zones with duplicated or multilayered basal laminae. The use of s...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue research 1995-01, Vol.279 (1), p.135-147
Main Authors: Meyer, J M, Ruch, J V, Kubler, M D, Kupferle, C, Lesot, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Matrix-mediated epithelio-mesenchymal interactions play a crucial role in the control of dental cytodifferentiations. Ultrastructural observation of the epithelio-mesenchymal junction in cultured embryonic mouse molars showed discrete zones with duplicated or multilayered basal laminae. The use of synthetic peptides demonstrated that the process was RGD*-independent, did not involve the YIGSR* sequence present on laminin and could occur spontaneously. Cultured incisors showed a similar but much more dramatic multiplication of the basal laminae. Furthermore, the deposition of multilayered basal laminae was specific for the labial aspect of the tooth and could be detected after 6 h of culture. Despite these alterations, preodontoblasts differentiated and gradients of differentiation were maintained, suggesting that among basement membrane constituents, the basal lamina itself does not play a critical role. More important is the inner dental epithelium which may still control odontoblast differentiation by means of diffusible molecules able to reach surface receptors expressed by preodontoblasts or matrix receptors underlying the basal lamina. Gradients of odontoblast differentiation could result from a progressive acquisition of competence by preodontoblasts.
ISSN:0302-766X
1432-0878
DOI:10.1007/BF00300700