Loading…

Molecular cloning and heterologous expression of acridone synthase from elicited Ruta graveolens L. cell suspension cultures

Cell suspension cultures of Ruta graveolens L. produce a variety of acridone alkaloids, and the accumulation can be stimulated by the addition of fungal elicitors. Acridone synthase, the enzyme catalyzing the synthesis of 1,3-dihydroxy-N-methylacridone from N-methylanthraniloyl-CoA and malonyl-CoA,...

Full description

Saved in:
Bibliographic Details
Published in:Plant molecular biology 1995-02, Vol.27 (4), p.681-692
Main Authors: Junghanns, K T, Kneusel, R E, Baumert, A, Maier, W, Gröger, D, Matern, U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell suspension cultures of Ruta graveolens L. produce a variety of acridone alkaloids, and the accumulation can be stimulated by the addition of fungal elicitors. Acridone synthase, the enzyme catalyzing the synthesis of 1,3-dihydroxy-N-methylacridone from N-methylanthraniloyl-CoA and malonyl-CoA, had been isolated from these cells, and the partial enzyme polypeptide sequence, elucidated from six tryptic fragments, revealed homology to heterologous chalcone synthases. Poly(A)+ RNA was isolated from Ruta cells that had been treated for 6 h with a crude cell wall elicitor from Phytophthora megasperma f. sp. glycinea, and a cDNA library was constructed in lambda 2AP. Clones harboring acridone synthase cDNA were isolated from the library by screening with a synthetic oligonucleotide probe complementary to a short stretch of sequence of the enzyme peptide with negligible homology to chalcone synthases. The identity of the clones was substantiated by DNA sequencing and by recognition of five additional peptides, determined previously from tryptic acridone synthase digests, in the translated sequence. An insert of roughly 1.4 kb encoded the complete acridone synthase, and alignments at both DNA and protein levels corroborated the high degree of homology to chalcone synthases. Expression of the enzyme in vector pET-11c in the Escherichia coli pLysS host strain proved the identity of the cloned cDNA. The heterologous enzyme in the crude E. coli extract exhibit high acridone but no chalcone synthase activity. The results were fully supported by northern blot hybridizations which revealed that the specific transcript abundance did not increase but rather decreased upon white light irradiation of cultured Ruta graveolens L. cells, a condition that commonly induces the abundance of chalcone synthase transcripts.
ISSN:0167-4412
1573-5028
DOI:10.1007/bf00020222