Loading…
Redox-active daunomycin-spin-labeled nucleic acid complexes
Interaction studies between daunomycin (DM) and enzymatically spin-labeled nucleic acid duplexes reveal two modes of binding by electron spin resonance (ESR) spectroscopy. At a low drug/nucleotide (D/N) ratio, the drug binds in the intercalative mode with only a slight reduction in base mobility. Sa...
Saved in:
Published in: | Biochemistry (Easton) 1986-11, Vol.25 (22), p.6890-6895 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interaction studies between daunomycin (DM) and enzymatically spin-labeled nucleic acid duplexes reveal two modes of binding by electron spin resonance (ESR) spectroscopy. At a low drug/nucleotide (D/N) ratio, the drug binds in the intercalative mode with only a slight reduction in base mobility. Saturation in the intercalative mode is achieved at a lower D/N ratio for B' DNA than for B DNA. After full intercalation, further addition of DM seems to destabilize the helix and to allow the formation of redox-active DM stacks complexed to the nucleic acid lattice. These stacks will irreversibly oxidize all the nitroxides covalently bound to the 4- or 5-position of the pyrimidine base. Interactions between DM and spin-labeled single-stranded nucleic acids lead directly to the formation of redox-active complexes, while mixing of the drug with spin-labeled nucleic acid building blocks not incorporated in a nucleic acid lattice causes no ESR signal change. Complete disappearance of the ESR signal of spin-labeled nucleic acids extrapolates to a D/N value which is a constant for a particular lattice system and is independent of spin-labeling content. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00370a023 |