Loading…

Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart

Myocardial conduction depends on the magnitude of the fast inward sodium current as well as on cardiac fiber orientation, with more rapid propagation along myocardial fibers than across them. Although antiarrhythmic drugs depress the sodium current in a frequency-dependent fashion in vitro, their ef...

Full description

Saved in:
Bibliographic Details
Published in:Circulation (New York, N.Y.) N.Y.), 1987-05, Vol.75 (5), p.1065-1073
Main Authors: BAJAJ, A. K, KOPELMAN, H. A, WIKSKO, J. P. JR, CASSIDY, F, WOOSLEY, R. L, RODEN, D. M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3465-43718c4c016805f6cbe19fec6b630129bcd2af599d6df5da1e720aae600a98a23
cites
container_end_page 1073
container_issue 5
container_start_page 1065
container_title Circulation (New York, N.Y.)
container_volume 75
creator BAJAJ, A. K
KOPELMAN, H. A
WIKSKO, J. P. JR
CASSIDY, F
WOOSLEY, R. L
RODEN, D. M
description Myocardial conduction depends on the magnitude of the fast inward sodium current as well as on cardiac fiber orientation, with more rapid propagation along myocardial fibers than across them. Although antiarrhythmic drugs depress the sodium current in a frequency-dependent fashion in vitro, their effects on conduction in the intact ventricle have been less well studied. We therefore evaluated the frequency- and orientation-dependent actions of mexiletine, quinidine, and their combination on epicardial conduction in 24 pentobarbital-anesthetized dogs. These interventions were chosen because the time constant of recovery from sodium-channel blockade by mexiletine in vitro is shorter than that from blockade by quinidine, and because we have previously shown that the combination of these drugs is often clinically effective when single-agent therapy fails. An electrode array that permitted measurement of conduction times in multiple orientations over short segments of epicardium without contamination by rapid Purkinje fiber propagation or by latency or virtual cathode effects at the stimulus site was developed for these studies. In all animals, the atrioventricular node was destroyed by injection of formalin to permit measurements over a wide range of cycle lengths (250 to 1500 msec). In the absence of drugs, conduction in any direction was frequency independent. In the presence of mexiletine, however, frequency-dependent increases in conduction times were found at cycle lengths of 600 msec or less; these changes were significantly greater in orientations for which baseline conduction was rapid. Quinidine, on the other hand, increased conduction times at all tested cycle lengths without significant orientation-dependent effects.
doi_str_mv 10.1161/01.CIR.75.5.1065
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77476565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77476565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3465-43718c4c016805f6cbe19fec6b630129bcd2af599d6df5da1e720aae600a98a23</originalsourceid><addsrcrecordid>eNo9UMtqGzEUFSEhdR77bgpahO5mosdImlkWEzeBQCC0ayFLV43KWHIkDTR_H7kxWR0O58G9B6GvlPSUSnpLaL9-eO6V6EVPiRQnaEUFG7pB8OkUrQghU6c4Y1_QRSl_G5VciXN0zgYuR6ZWKG4yvC4Q7VuHTXQ45QCxmhpS7BzsIbpGMXgPthacPN7BvzBDDRH--1-XEIM7sBSxTdEt9pDFIeL6Ag2qsRW79Ae_gMn1Cp15Mxe4PuIl-r25-7W-7x6ffj6sfzx2lg9SdANXdLSDJVSORHhpt0CndoLcSk4om7bWMePFNDnpvHCGgmLEGJCEmGk0jF-i7x-9-5zae6XqXSgW5tlESEvRSg1KCimakXwYbU6lZPB6n8PO5DdNiT5MrAnVbWKthBb6MHGLfDt2L9sduM_AcdOm3xx1U6yZfTbRhvJpGzmTE-P8HU-nhTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77476565</pqid></control><display><type>article</type><title>Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart</title><source>EZB Electronic Journals Library</source><creator>BAJAJ, A. K ; KOPELMAN, H. A ; WIKSKO, J. P. JR ; CASSIDY, F ; WOOSLEY, R. L ; RODEN, D. M</creator><creatorcontrib>BAJAJ, A. K ; KOPELMAN, H. A ; WIKSKO, J. P. JR ; CASSIDY, F ; WOOSLEY, R. L ; RODEN, D. M</creatorcontrib><description>Myocardial conduction depends on the magnitude of the fast inward sodium current as well as on cardiac fiber orientation, with more rapid propagation along myocardial fibers than across them. Although antiarrhythmic drugs depress the sodium current in a frequency-dependent fashion in vitro, their effects on conduction in the intact ventricle have been less well studied. We therefore evaluated the frequency- and orientation-dependent actions of mexiletine, quinidine, and their combination on epicardial conduction in 24 pentobarbital-anesthetized dogs. These interventions were chosen because the time constant of recovery from sodium-channel blockade by mexiletine in vitro is shorter than that from blockade by quinidine, and because we have previously shown that the combination of these drugs is often clinically effective when single-agent therapy fails. An electrode array that permitted measurement of conduction times in multiple orientations over short segments of epicardium without contamination by rapid Purkinje fiber propagation or by latency or virtual cathode effects at the stimulus site was developed for these studies. In all animals, the atrioventricular node was destroyed by injection of formalin to permit measurements over a wide range of cycle lengths (250 to 1500 msec). In the absence of drugs, conduction in any direction was frequency independent. In the presence of mexiletine, however, frequency-dependent increases in conduction times were found at cycle lengths of 600 msec or less; these changes were significantly greater in orientations for which baseline conduction was rapid. Quinidine, on the other hand, increased conduction times at all tested cycle lengths without significant orientation-dependent effects.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/01.CIR.75.5.1065</identifier><identifier>PMID: 2436827</identifier><identifier>CODEN: CIRCAZ</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject>Animals ; Antiarythmic agents ; Biological and medical sciences ; Cardiac Pacing, Artificial ; Cardiovascular system ; Dogs ; Drug Combinations ; Electrocardiography ; Heart Conduction System - drug effects ; Ion Channels - drug effects ; Medical sciences ; Mexiletine - pharmacology ; Myocardial Contraction - drug effects ; Pharmacology. Drug treatments ; Quinidine - pharmacology ; Sodium - metabolism</subject><ispartof>Circulation (New York, N.Y.), 1987-05, Vol.75 (5), p.1065-1073</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3465-43718c4c016805f6cbe19fec6b630129bcd2af599d6df5da1e720aae600a98a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8326923$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2436827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BAJAJ, A. K</creatorcontrib><creatorcontrib>KOPELMAN, H. A</creatorcontrib><creatorcontrib>WIKSKO, J. P. JR</creatorcontrib><creatorcontrib>CASSIDY, F</creatorcontrib><creatorcontrib>WOOSLEY, R. L</creatorcontrib><creatorcontrib>RODEN, D. M</creatorcontrib><title>Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>Myocardial conduction depends on the magnitude of the fast inward sodium current as well as on cardiac fiber orientation, with more rapid propagation along myocardial fibers than across them. Although antiarrhythmic drugs depress the sodium current in a frequency-dependent fashion in vitro, their effects on conduction in the intact ventricle have been less well studied. We therefore evaluated the frequency- and orientation-dependent actions of mexiletine, quinidine, and their combination on epicardial conduction in 24 pentobarbital-anesthetized dogs. These interventions were chosen because the time constant of recovery from sodium-channel blockade by mexiletine in vitro is shorter than that from blockade by quinidine, and because we have previously shown that the combination of these drugs is often clinically effective when single-agent therapy fails. An electrode array that permitted measurement of conduction times in multiple orientations over short segments of epicardium without contamination by rapid Purkinje fiber propagation or by latency or virtual cathode effects at the stimulus site was developed for these studies. In all animals, the atrioventricular node was destroyed by injection of formalin to permit measurements over a wide range of cycle lengths (250 to 1500 msec). In the absence of drugs, conduction in any direction was frequency independent. In the presence of mexiletine, however, frequency-dependent increases in conduction times were found at cycle lengths of 600 msec or less; these changes were significantly greater in orientations for which baseline conduction was rapid. Quinidine, on the other hand, increased conduction times at all tested cycle lengths without significant orientation-dependent effects.</description><subject>Animals</subject><subject>Antiarythmic agents</subject><subject>Biological and medical sciences</subject><subject>Cardiac Pacing, Artificial</subject><subject>Cardiovascular system</subject><subject>Dogs</subject><subject>Drug Combinations</subject><subject>Electrocardiography</subject><subject>Heart Conduction System - drug effects</subject><subject>Ion Channels - drug effects</subject><subject>Medical sciences</subject><subject>Mexiletine - pharmacology</subject><subject>Myocardial Contraction - drug effects</subject><subject>Pharmacology. Drug treatments</subject><subject>Quinidine - pharmacology</subject><subject>Sodium - metabolism</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo9UMtqGzEUFSEhdR77bgpahO5mosdImlkWEzeBQCC0ayFLV43KWHIkDTR_H7kxWR0O58G9B6GvlPSUSnpLaL9-eO6V6EVPiRQnaEUFG7pB8OkUrQghU6c4Y1_QRSl_G5VciXN0zgYuR6ZWKG4yvC4Q7VuHTXQ45QCxmhpS7BzsIbpGMXgPthacPN7BvzBDDRH--1-XEIM7sBSxTdEt9pDFIeL6Ag2qsRW79Ae_gMn1Cp15Mxe4PuIl-r25-7W-7x6ffj6sfzx2lg9SdANXdLSDJVSORHhpt0CndoLcSk4om7bWMePFNDnpvHCGgmLEGJCEmGk0jF-i7x-9-5zae6XqXSgW5tlESEvRSg1KCimakXwYbU6lZPB6n8PO5DdNiT5MrAnVbWKthBb6MHGLfDt2L9sduM_AcdOm3xx1U6yZfTbRhvJpGzmTE-P8HU-nhTM</recordid><startdate>198705</startdate><enddate>198705</enddate><creator>BAJAJ, A. K</creator><creator>KOPELMAN, H. A</creator><creator>WIKSKO, J. P. JR</creator><creator>CASSIDY, F</creator><creator>WOOSLEY, R. L</creator><creator>RODEN, D. M</creator><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198705</creationdate><title>Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart</title><author>BAJAJ, A. K ; KOPELMAN, H. A ; WIKSKO, J. P. JR ; CASSIDY, F ; WOOSLEY, R. L ; RODEN, D. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3465-43718c4c016805f6cbe19fec6b630129bcd2af599d6df5da1e720aae600a98a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Animals</topic><topic>Antiarythmic agents</topic><topic>Biological and medical sciences</topic><topic>Cardiac Pacing, Artificial</topic><topic>Cardiovascular system</topic><topic>Dogs</topic><topic>Drug Combinations</topic><topic>Electrocardiography</topic><topic>Heart Conduction System - drug effects</topic><topic>Ion Channels - drug effects</topic><topic>Medical sciences</topic><topic>Mexiletine - pharmacology</topic><topic>Myocardial Contraction - drug effects</topic><topic>Pharmacology. Drug treatments</topic><topic>Quinidine - pharmacology</topic><topic>Sodium - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAJAJ, A. K</creatorcontrib><creatorcontrib>KOPELMAN, H. A</creatorcontrib><creatorcontrib>WIKSKO, J. P. JR</creatorcontrib><creatorcontrib>CASSIDY, F</creatorcontrib><creatorcontrib>WOOSLEY, R. L</creatorcontrib><creatorcontrib>RODEN, D. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAJAJ, A. K</au><au>KOPELMAN, H. A</au><au>WIKSKO, J. P. JR</au><au>CASSIDY, F</au><au>WOOSLEY, R. L</au><au>RODEN, D. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>1987-05</date><risdate>1987</risdate><volume>75</volume><issue>5</issue><spage>1065</spage><epage>1073</epage><pages>1065-1073</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><coden>CIRCAZ</coden><abstract>Myocardial conduction depends on the magnitude of the fast inward sodium current as well as on cardiac fiber orientation, with more rapid propagation along myocardial fibers than across them. Although antiarrhythmic drugs depress the sodium current in a frequency-dependent fashion in vitro, their effects on conduction in the intact ventricle have been less well studied. We therefore evaluated the frequency- and orientation-dependent actions of mexiletine, quinidine, and their combination on epicardial conduction in 24 pentobarbital-anesthetized dogs. These interventions were chosen because the time constant of recovery from sodium-channel blockade by mexiletine in vitro is shorter than that from blockade by quinidine, and because we have previously shown that the combination of these drugs is often clinically effective when single-agent therapy fails. An electrode array that permitted measurement of conduction times in multiple orientations over short segments of epicardium without contamination by rapid Purkinje fiber propagation or by latency or virtual cathode effects at the stimulus site was developed for these studies. In all animals, the atrioventricular node was destroyed by injection of formalin to permit measurements over a wide range of cycle lengths (250 to 1500 msec). In the absence of drugs, conduction in any direction was frequency independent. In the presence of mexiletine, however, frequency-dependent increases in conduction times were found at cycle lengths of 600 msec or less; these changes were significantly greater in orientations for which baseline conduction was rapid. Quinidine, on the other hand, increased conduction times at all tested cycle lengths without significant orientation-dependent effects.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>2436827</pmid><doi>10.1161/01.CIR.75.5.1065</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 1987-05, Vol.75 (5), p.1065-1073
issn 0009-7322
1524-4539
language eng
recordid cdi_proquest_miscellaneous_77476565
source EZB Electronic Journals Library
subjects Animals
Antiarythmic agents
Biological and medical sciences
Cardiac Pacing, Artificial
Cardiovascular system
Dogs
Drug Combinations
Electrocardiography
Heart Conduction System - drug effects
Ion Channels - drug effects
Medical sciences
Mexiletine - pharmacology
Myocardial Contraction - drug effects
Pharmacology. Drug treatments
Quinidine - pharmacology
Sodium - metabolism
title Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-%20and%20orientation-dependent%20effects%20of%20mexiletine%20and%20quinidine%20on%20conduction%20in%20the%20intact%20dog%20heart&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=BAJAJ,%20A.%20K&rft.date=1987-05&rft.volume=75&rft.issue=5&rft.spage=1065&rft.epage=1073&rft.pages=1065-1073&rft.issn=0009-7322&rft.eissn=1524-4539&rft.coden=CIRCAZ&rft_id=info:doi/10.1161/01.CIR.75.5.1065&rft_dat=%3Cproquest_cross%3E77476565%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3465-43718c4c016805f6cbe19fec6b630129bcd2af599d6df5da1e720aae600a98a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=77476565&rft_id=info:pmid/2436827&rfr_iscdi=true