Loading…

Interaction between the Components of the Interferon γ Receptor Complex (∗)

Interferon γ (IFN-γ) signals through a multimeric receptor complex consisting of two different chains: the IFN-γ receptor binding subunit (IFN-γR, IFN-γR1), and a transmembrane accessory factor (AF-1, IFN-γR2) necessary for signal transduction. Using cell lines expressing different cloned components...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1995-09, Vol.270 (36), p.20915-20921
Main Authors: Kotenko, Serguei V., Izotova, Lara S., Pollack, Brian P., Mariano, Thomas M., Donnelly, Robert J., Muthukumaran, Geetha, Cook, Jeffry R., Garotta, Gianni, Silvennoinen, Olli, Ihle, James N., Pestka, Sidney
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interferon γ (IFN-γ) signals through a multimeric receptor complex consisting of two different chains: the IFN-γ receptor binding subunit (IFN-γR, IFN-γR1), and a transmembrane accessory factor (AF-1, IFN-γR2) necessary for signal transduction. Using cell lines expressing different cloned components of the IFN-γ receptor complex, we examined the function of the receptor components in signal transduction upon IFN-γ treatment. A specific IFN-γR2:IFN-γ cross-linked complex was observed in cells expressing both IFN-γR1 and IFN-γR2 indicating that IFN-γR2 (AF-1) interacts with IFN-γ and is closely associated with IFN-γR1. We show that the intracellular domain of IFN-γR2 is necessary for signaling. Cells coexpressing IFN-γR1 and truncated IFN-γR2, lacking the COOH-terminal 51 amino acids (residues 286-337), or cells expressing IFN-γR1 alone were unresponsive to IFN-γ treatment as measured by MHC class I antigen induction. Jak1, Jak2, and Stat1α were activated, and IFN-γR1 was phosphorylated only in cells expressing both IFN-γR1 and IFN-γR2. Jak2 kinase was shown to associate with the intracellular domain of the IFN-γR2.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.36.20915