Loading…

Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques

The purpose of the study was to quantify the effect of errors in spatial alignment between the center of pressure recorded from a force platform and the coordinates of the foot recorded from film on resultant joint torques in the lower extremity during the stance phase of gait. Two-dimensional kinem...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 1995-08, Vol.28 (8), p.985-988
Main Authors: McCaw, Steven T., DeVita, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of the study was to quantify the effect of errors in spatial alignment between the center of pressure recorded from a force platform and the coordinates of the foot recorded from film on resultant joint torques in the lower extremity during the stance phase of gait. Two-dimensional kinematic and kinetic data from eight subjects performing walking and running were analyzed using inverse dynamics with the obtained center of pressure values and with ±0.5 and ±1.0 cm shifts in the anteroposterior location of the center of pressure under the support foot. Shifting the center of pressure posteriorly increased the flexor (dorsiflexor) torques at the hip and ankle and decreased the extensor (plantarflexor) torques at these joints. This shift also caused an increase in the extensor and a decrease in the flexor torques at the knee. Shifting the center of pressure anteriorly caused the opposite effects at each joint. The ±0.5 and ±1.0 cm shifts in the location of the center of pressure caused, on average, 7 and 14% changes, respectively, in maximum joint torque and angular impulse values. Relative transition times between flexor and extensor torques were either increased or decreased, on average, by 7 and 13%, respectively for the two conditions over all trials. Based on these results, it is concluded that due to potential errors in the spatial alignment of kinetic and kinematic data, joint torques in the literature on gait should be considered as approximations of the true values.
ISSN:0021-9290
1873-2380
DOI:10.1016/0021-9290(94)00151-S