Loading…
Hydroxylated Aromatic Inhibitors of HIV-1 Integrase
Efficient replication of HIV-1 requires integration of a DNA copy of the viral genome into a chromosome of the host cell. Integration is catalyzed by the viral integrase, and we have previously reported that phenolic moieties in compounds such as flavones, caffeic acid phenethyl ester (CAPE, 2), and...
Saved in:
Published in: | Journal of medicinal chemistry 1995-10, Vol.38 (21), p.4171-4178 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a480t-8ae40c5b37f5f47cadb821fb96e3d23293ca0a8c171273ffd6560b7bedb526103 |
---|---|
cites | |
container_end_page | 4178 |
container_issue | 21 |
container_start_page | 4171 |
container_title | Journal of medicinal chemistry |
container_volume | 38 |
creator | Burke, Terrence R. Jr Fesen, Mark Mazumder, Abhijit Yung, Jessie Wang, Jian Carothers, Adelaide M Grunberger, Dezider Driscoll, John Pommier, Yves Kohn, Kurt |
description | Efficient replication of HIV-1 requires integration of a DNA copy of the viral genome into a chromosome of the host cell. Integration is catalyzed by the viral integrase, and we have previously reported that phenolic moieties in compounds such as flavones, caffeic acid phenethyl ester (CAPE, 2), and curcumin confer inhibitory activity against HIV-1 integrase. We now extend these findings by performing a comprehensive structure-activity relationship using CAPE analogues. Approximately 30 compounds have been prepared as HIV integrase inhibitors based on the structural lead provided by CAPE, which has previously been shown to exhibit an IC50 value of 7 microM in our integration assay. These analogues were designed to examine specific features of the parent CAPE structure which may be important for activity. Among the features examined for their effects on inhibitory potency were ring substitution, side chain length and composition, and phenyl ring conformational orientation. In an assay which measured the combined effect of two sequential steps, dinucleotide cleavage and strand transfer, several analogues have IC50 values for 3'-processing and strand transfer lower than those of CAPE. Inhibition of strand transfer was assayed using both blunt-ended and "precleaved" DNA substrates. Disintegration using an integrase mutant lacking the N-terminal zinc finger and C-terminal DNA-binding domains was also inhibited by these analogues, suggesting that the binding site for these compounds resides in the central catalytic core. Several CAPE analogues were also tested for selective activity against transformed cells. Taken together, these results suggest that the development of novel antiviral agents for the treatment of acquired immune deficiency syndrome can be based upon inhibition of HIV-1 integrase. |
doi_str_mv | 10.1021/jm00021a006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77575469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77575469</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-8ae40c5b37f5f47cadb821fb96e3d23293ca0a8c171273ffd6560b7bedb526103</originalsourceid><addsrcrecordid>eNqF0EtLAzEUBeAgitbqyrXQhehCRvNOuyxibaG-H9twJ5Po1JmOJjPQ_nujHYoLwdWFez5uwkHogOAzgik5n5UYxwkYyw3UIYLihPcx30SduKYJlZTtoN0QZpExQtk22lZcMcF5B7HxMvPVYllAbbPe0Fcl1LnpTeZveZrXlQ-9yvXGk5eExF1tXz0Eu4e2HBTB7rezi55Hl08X42R6ezW5GE4TiM_XSR8sx0akTDnhuDKQpX1KXDqQlmWU0QEzgKFviCJUMecyKSROVWqzVFBJMOui49XdD199NjbUusyDsUUBc1s1QSsllOBy8C8kCgsmCInwdAWNr0Lw1ukPn5fgl5pg_d2l_tVl1Ift2SYtbba2bXkxP2pzCAYK52Fu8rBmTGHCf1iyYnmo7WIdg3_XUjEl9NPdo34Z3ckHcX2j76M_WXkwQc-qxs9jyX9-8AvbYpTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17053511</pqid></control><display><type>article</type><title>Hydroxylated Aromatic Inhibitors of HIV-1 Integrase</title><source>ACS CRKN Legacy Archives</source><creator>Burke, Terrence R. Jr ; Fesen, Mark ; Mazumder, Abhijit ; Yung, Jessie ; Wang, Jian ; Carothers, Adelaide M ; Grunberger, Dezider ; Driscoll, John ; Pommier, Yves ; Kohn, Kurt</creator><creatorcontrib>Burke, Terrence R. Jr ; Fesen, Mark ; Mazumder, Abhijit ; Yung, Jessie ; Wang, Jian ; Carothers, Adelaide M ; Grunberger, Dezider ; Driscoll, John ; Pommier, Yves ; Kohn, Kurt</creatorcontrib><description>Efficient replication of HIV-1 requires integration of a DNA copy of the viral genome into a chromosome of the host cell. Integration is catalyzed by the viral integrase, and we have previously reported that phenolic moieties in compounds such as flavones, caffeic acid phenethyl ester (CAPE, 2), and curcumin confer inhibitory activity against HIV-1 integrase. We now extend these findings by performing a comprehensive structure-activity relationship using CAPE analogues. Approximately 30 compounds have been prepared as HIV integrase inhibitors based on the structural lead provided by CAPE, which has previously been shown to exhibit an IC50 value of 7 microM in our integration assay. These analogues were designed to examine specific features of the parent CAPE structure which may be important for activity. Among the features examined for their effects on inhibitory potency were ring substitution, side chain length and composition, and phenyl ring conformational orientation. In an assay which measured the combined effect of two sequential steps, dinucleotide cleavage and strand transfer, several analogues have IC50 values for 3'-processing and strand transfer lower than those of CAPE. Inhibition of strand transfer was assayed using both blunt-ended and "precleaved" DNA substrates. Disintegration using an integrase mutant lacking the N-terminal zinc finger and C-terminal DNA-binding domains was also inhibited by these analogues, suggesting that the binding site for these compounds resides in the central catalytic core. Several CAPE analogues were also tested for selective activity against transformed cells. Taken together, these results suggest that the development of novel antiviral agents for the treatment of acquired immune deficiency syndrome can be based upon inhibition of HIV-1 integrase.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm00021a006</identifier><identifier>PMID: 7473544</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>AIDS/HIV ; Animals ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; Antiviral agents ; Antiviral Agents - chemical synthesis ; Apoptosis - drug effects ; Base Sequence ; Binding Sites ; Biological and medical sciences ; Caffeic Acids - chemistry ; Caffeic Acids - pharmacology ; Cell Line, Transformed ; DNA - chemistry ; DNA - metabolism ; DNA Nucleotidyltransferases - antagonists & inhibitors ; Enzyme Inhibitors - chemical synthesis ; HIV - drug effects ; human immunodeficiency virus 1 ; Humans ; Hydroxylation ; Integrases ; Magnetic Resonance Spectroscopy ; Medical sciences ; Molecular Conformation ; Molecular Sequence Data ; Molecular Structure ; Pharmacology. Drug treatments ; Phenylethyl Alcohol - analogs & derivatives ; Phenylethyl Alcohol - chemistry ; Phenylethyl Alcohol - pharmacology ; Rats ; Structure-Activity Relationship ; Tumor Cells, Cultured ; Zinc Fingers</subject><ispartof>Journal of medicinal chemistry, 1995-10, Vol.38 (21), p.4171-4178</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-8ae40c5b37f5f47cadb821fb96e3d23293ca0a8c171273ffd6560b7bedb526103</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm00021a006$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm00021a006$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27064,27924,27925,56766,56816</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3701444$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7473544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burke, Terrence R. Jr</creatorcontrib><creatorcontrib>Fesen, Mark</creatorcontrib><creatorcontrib>Mazumder, Abhijit</creatorcontrib><creatorcontrib>Yung, Jessie</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Carothers, Adelaide M</creatorcontrib><creatorcontrib>Grunberger, Dezider</creatorcontrib><creatorcontrib>Driscoll, John</creatorcontrib><creatorcontrib>Pommier, Yves</creatorcontrib><creatorcontrib>Kohn, Kurt</creatorcontrib><title>Hydroxylated Aromatic Inhibitors of HIV-1 Integrase</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Efficient replication of HIV-1 requires integration of a DNA copy of the viral genome into a chromosome of the host cell. Integration is catalyzed by the viral integrase, and we have previously reported that phenolic moieties in compounds such as flavones, caffeic acid phenethyl ester (CAPE, 2), and curcumin confer inhibitory activity against HIV-1 integrase. We now extend these findings by performing a comprehensive structure-activity relationship using CAPE analogues. Approximately 30 compounds have been prepared as HIV integrase inhibitors based on the structural lead provided by CAPE, which has previously been shown to exhibit an IC50 value of 7 microM in our integration assay. These analogues were designed to examine specific features of the parent CAPE structure which may be important for activity. Among the features examined for their effects on inhibitory potency were ring substitution, side chain length and composition, and phenyl ring conformational orientation. In an assay which measured the combined effect of two sequential steps, dinucleotide cleavage and strand transfer, several analogues have IC50 values for 3'-processing and strand transfer lower than those of CAPE. Inhibition of strand transfer was assayed using both blunt-ended and "precleaved" DNA substrates. Disintegration using an integrase mutant lacking the N-terminal zinc finger and C-terminal DNA-binding domains was also inhibited by these analogues, suggesting that the binding site for these compounds resides in the central catalytic core. Several CAPE analogues were also tested for selective activity against transformed cells. Taken together, these results suggest that the development of novel antiviral agents for the treatment of acquired immune deficiency syndrome can be based upon inhibition of HIV-1 integrase.</description><subject>AIDS/HIV</subject><subject>Animals</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>Antiviral agents</subject><subject>Antiviral Agents - chemical synthesis</subject><subject>Apoptosis - drug effects</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Caffeic Acids - chemistry</subject><subject>Caffeic Acids - pharmacology</subject><subject>Cell Line, Transformed</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Nucleotidyltransferases - antagonists & inhibitors</subject><subject>Enzyme Inhibitors - chemical synthesis</subject><subject>HIV - drug effects</subject><subject>human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Hydroxylation</subject><subject>Integrases</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Molecular Conformation</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Pharmacology. Drug treatments</subject><subject>Phenylethyl Alcohol - analogs & derivatives</subject><subject>Phenylethyl Alcohol - chemistry</subject><subject>Phenylethyl Alcohol - pharmacology</subject><subject>Rats</subject><subject>Structure-Activity Relationship</subject><subject>Tumor Cells, Cultured</subject><subject>Zinc Fingers</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLAzEUBeAgitbqyrXQhehCRvNOuyxibaG-H9twJ5Po1JmOJjPQ_nujHYoLwdWFez5uwkHogOAzgik5n5UYxwkYyw3UIYLihPcx30SduKYJlZTtoN0QZpExQtk22lZcMcF5B7HxMvPVYllAbbPe0Fcl1LnpTeZveZrXlQ-9yvXGk5eExF1tXz0Eu4e2HBTB7rezi55Hl08X42R6ezW5GE4TiM_XSR8sx0akTDnhuDKQpX1KXDqQlmWU0QEzgKFviCJUMecyKSROVWqzVFBJMOui49XdD199NjbUusyDsUUBc1s1QSsllOBy8C8kCgsmCInwdAWNr0Lw1ukPn5fgl5pg_d2l_tVl1Ift2SYtbba2bXkxP2pzCAYK52Fu8rBmTGHCf1iyYnmo7WIdg3_XUjEl9NPdo34Z3ckHcX2j76M_WXkwQc-qxs9jyX9-8AvbYpTs</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Burke, Terrence R. Jr</creator><creator>Fesen, Mark</creator><creator>Mazumder, Abhijit</creator><creator>Yung, Jessie</creator><creator>Wang, Jian</creator><creator>Carothers, Adelaide M</creator><creator>Grunberger, Dezider</creator><creator>Driscoll, John</creator><creator>Pommier, Yves</creator><creator>Kohn, Kurt</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>19951001</creationdate><title>Hydroxylated Aromatic Inhibitors of HIV-1 Integrase</title><author>Burke, Terrence R. Jr ; Fesen, Mark ; Mazumder, Abhijit ; Yung, Jessie ; Wang, Jian ; Carothers, Adelaide M ; Grunberger, Dezider ; Driscoll, John ; Pommier, Yves ; Kohn, Kurt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-8ae40c5b37f5f47cadb821fb96e3d23293ca0a8c171273ffd6560b7bedb526103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>AIDS/HIV</topic><topic>Animals</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>Antiviral agents</topic><topic>Antiviral Agents - chemical synthesis</topic><topic>Apoptosis - drug effects</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Caffeic Acids - chemistry</topic><topic>Caffeic Acids - pharmacology</topic><topic>Cell Line, Transformed</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Nucleotidyltransferases - antagonists & inhibitors</topic><topic>Enzyme Inhibitors - chemical synthesis</topic><topic>HIV - drug effects</topic><topic>human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Hydroxylation</topic><topic>Integrases</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Molecular Conformation</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Pharmacology. Drug treatments</topic><topic>Phenylethyl Alcohol - analogs & derivatives</topic><topic>Phenylethyl Alcohol - chemistry</topic><topic>Phenylethyl Alcohol - pharmacology</topic><topic>Rats</topic><topic>Structure-Activity Relationship</topic><topic>Tumor Cells, Cultured</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burke, Terrence R. Jr</creatorcontrib><creatorcontrib>Fesen, Mark</creatorcontrib><creatorcontrib>Mazumder, Abhijit</creatorcontrib><creatorcontrib>Yung, Jessie</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Carothers, Adelaide M</creatorcontrib><creatorcontrib>Grunberger, Dezider</creatorcontrib><creatorcontrib>Driscoll, John</creatorcontrib><creatorcontrib>Pommier, Yves</creatorcontrib><creatorcontrib>Kohn, Kurt</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burke, Terrence R. Jr</au><au>Fesen, Mark</au><au>Mazumder, Abhijit</au><au>Yung, Jessie</au><au>Wang, Jian</au><au>Carothers, Adelaide M</au><au>Grunberger, Dezider</au><au>Driscoll, John</au><au>Pommier, Yves</au><au>Kohn, Kurt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxylated Aromatic Inhibitors of HIV-1 Integrase</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>1995-10-01</date><risdate>1995</risdate><volume>38</volume><issue>21</issue><spage>4171</spage><epage>4178</epage><pages>4171-4178</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>Efficient replication of HIV-1 requires integration of a DNA copy of the viral genome into a chromosome of the host cell. Integration is catalyzed by the viral integrase, and we have previously reported that phenolic moieties in compounds such as flavones, caffeic acid phenethyl ester (CAPE, 2), and curcumin confer inhibitory activity against HIV-1 integrase. We now extend these findings by performing a comprehensive structure-activity relationship using CAPE analogues. Approximately 30 compounds have been prepared as HIV integrase inhibitors based on the structural lead provided by CAPE, which has previously been shown to exhibit an IC50 value of 7 microM in our integration assay. These analogues were designed to examine specific features of the parent CAPE structure which may be important for activity. Among the features examined for their effects on inhibitory potency were ring substitution, side chain length and composition, and phenyl ring conformational orientation. In an assay which measured the combined effect of two sequential steps, dinucleotide cleavage and strand transfer, several analogues have IC50 values for 3'-processing and strand transfer lower than those of CAPE. Inhibition of strand transfer was assayed using both blunt-ended and "precleaved" DNA substrates. Disintegration using an integrase mutant lacking the N-terminal zinc finger and C-terminal DNA-binding domains was also inhibited by these analogues, suggesting that the binding site for these compounds resides in the central catalytic core. Several CAPE analogues were also tested for selective activity against transformed cells. Taken together, these results suggest that the development of novel antiviral agents for the treatment of acquired immune deficiency syndrome can be based upon inhibition of HIV-1 integrase.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>7473544</pmid><doi>10.1021/jm00021a006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 1995-10, Vol.38 (21), p.4171-4178 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_77575469 |
source | ACS CRKN Legacy Archives |
subjects | AIDS/HIV Animals Antibiotics. Antiinfectious agents. Antiparasitic agents Antiviral agents Antiviral Agents - chemical synthesis Apoptosis - drug effects Base Sequence Binding Sites Biological and medical sciences Caffeic Acids - chemistry Caffeic Acids - pharmacology Cell Line, Transformed DNA - chemistry DNA - metabolism DNA Nucleotidyltransferases - antagonists & inhibitors Enzyme Inhibitors - chemical synthesis HIV - drug effects human immunodeficiency virus 1 Humans Hydroxylation Integrases Magnetic Resonance Spectroscopy Medical sciences Molecular Conformation Molecular Sequence Data Molecular Structure Pharmacology. Drug treatments Phenylethyl Alcohol - analogs & derivatives Phenylethyl Alcohol - chemistry Phenylethyl Alcohol - pharmacology Rats Structure-Activity Relationship Tumor Cells, Cultured Zinc Fingers |
title | Hydroxylated Aromatic Inhibitors of HIV-1 Integrase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxylated%20Aromatic%20Inhibitors%20of%20HIV-1%20Integrase&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Burke,%20Terrence%20R.%20Jr&rft.date=1995-10-01&rft.volume=38&rft.issue=21&rft.spage=4171&rft.epage=4178&rft.pages=4171-4178&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm00021a006&rft_dat=%3Cproquest_cross%3E77575469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a480t-8ae40c5b37f5f47cadb821fb96e3d23293ca0a8c171273ffd6560b7bedb526103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17053511&rft_id=info:pmid/7473544&rfr_iscdi=true |