Loading…

The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. Projections from the intermediate region

The present study examines the projection to the cerebellar nuclei of Purkinje cells in particular sagittal zones within the intermediate region of the cerebellar cortex. The boundaries between the zones were delimited electrophysiologically on the basis of their climbing fibre input so that a small...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 1987-04, Vol.66 (2), p.318-338
Main Authors: Trott, J R, Armstrong, D M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study examines the projection to the cerebellar nuclei of Purkinje cells in particular sagittal zones within the intermediate region of the cerebellar cortex. The boundaries between the zones were delimited electrophysiologically on the basis of their climbing fibre input so that a small volume (10-120 nl) of 3H-leucine could be injected into the centre of a chosen zone. The subsequent uptake and orthograde transport of labelled material by the Purkinje cells was studied autoradiographically. It was found that the smallest injections resulted in injection sites restricted to a single cortical zone and extremely reproducible results could be obtained using such a combined electrophysiological/autoradiographic technique. Larger injections sometimes spread to a neighbouring zone but the resultant terminal labelling within the deep nuclei was invariably consistent with the results obtained from smaller injections. The c1 and c3 olivocerebellar zones, which are known to receive climbing fibre input transmitted from the ipsilateral forelimb via a dorsal funiculus spino-olivo-cerebellar pathway (DF-SOCP), were found to project to partially overlapping regions within nucleus interpositus anterior (NIA). No projection to nucleus interpositus posterior (NIP) was demonstrated for either zone. No distinction could be seen between the terminal fields for the medial and lateral halves of the c1 zone which are, however, known to receive their climbing fibre input from quite separate regions within the inferior olive. The c2 zone, which was delimited on the basis of its climbing fibre input which is transmitted from both forelimbs via a lateral funiculus SOCP, was found to project exclusively to interpositus posterior. The hemispheral d1 zone was found to project to the transitional region where interpositus anterior and the dentate nucleus adjoin.
ISSN:0014-4819
1432-1106
DOI:10.1007/BF00243308