Loading…
The Functions of Human Papillomavirus Type 11 E1, E2, and E2C Proteins in Cell-free DNA Replication ()
We examined the functions of human papillomavirus type 11 (HPV-11) E1 and E2 proteins purified from Sf9 cells infected with recombinant baculoviruses in cell-free HPV-11 origin (ori) replication. The E1 protein binds specifically to a wild type but not to a mutated sequence in the ori spanning nucle...
Saved in:
Published in: | The Journal of biological chemistry 1995-11, Vol.270 (45), p.27283-27291 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examined the functions of human papillomavirus type 11 (HPV-11) E1 and E2 proteins purified from Sf9 cells infected with recombinant baculoviruses in cell-free HPV-11 origin (ori) replication. The E1 protein binds specifically to a wild type but not to a mutated sequence in the ori spanning nucleotide position 1. It also has a relatively strong affinity for nonspecific DNA. A neutralizing antiserum directed against the amino-terminal one-third of the E1 protein totally abolishes initiation and elongation, suggesting that it functions as an initiator and a helicase at the replication fork. An antiserum against the carboxyl-terminal portion of E1 protein abolished replication only when added prior to initiation. Thus this portion of E1 is hidden in the replication complexes. The HPV-11 E2 protein appears not to be essential for elongation, but it must be present in the preinitiation complex for the E1 protein to recruit host DNA replication machinery to the ori. E2 antiserum added after preincubation in the absence of the cell extracts totally abolished replication. An identical conclusion is also reached for the bovine papillomavirus type 1 E2 protein. Finally, the HPV-11 E2C protein lacking the transacting domain of the full-length E2 protein partially inhibits E2-dependent ori replication. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.270.45.27283 |