Loading…

Identification of a Mutation in the Ileal Sodium-dependent Bile Acid Transporter Gene That Abolishes Transport Activity ()

The ileal Na+/bile acid cotransporter plays a critical role in the reabsorption of bile acids from the small intestine. In the course of cloning and characterizing the human ileal Na+/bile acid cotransporter cDNA, a dysfunctional isoform was identified in a patient diagnosed with Crohn's diseas...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1995-11, Vol.270 (45), p.27228-27234
Main Authors: Wong, Melissa H., Oelkers, Peter, Dawson, Paul A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ileal Na+/bile acid cotransporter plays a critical role in the reabsorption of bile acids from the small intestine. In the course of cloning and characterizing the human ileal Na+/bile acid cotransporter cDNA, a dysfunctional isoform was identified in a patient diagnosed with Crohn's disease. Expression studies using hamster-human ileal Na+/bile acid cotransporter cDNA chimeras narrowed the location of the defect to the carboxyl-terminal 94 amino acids. Comparison of the sequence of the dysfunctional isoform to that of a wild-type human ileal Na+/bile acid cotransporter genomic clone revealed a single C to T transition resulting in a proline to serine substitution at amino acid position 290. The inheritance of this mutation in the proband's family was confirmed by single-stranded conformation polymorphism analysis and DNA sequencing. In transfected COS-1 cells, the single amino acid change abolished taurocholate transport activity but did not alter the transporter's synthesis or subcellular distribution. This dysfunctional mutation represents the first known molecular defect in a human sodium-dependent bile acid transporter.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.45.27228