Loading…

Fuel metabolism in growth hormone-deficient adults

Apart from being a stimulator of longitudinal growth, growth hormone (GH) regulates fuel metabolism in children and adults. A halfmark is mobilization of lipids, which involves an inhibition of lipoprotein lipase activity in adipose tissue and activation of the hormone sensitive lipase. Suppression...

Full description

Saved in:
Bibliographic Details
Published in:Metabolism, clinical and experimental clinical and experimental, 1995-10, Vol.44 (10), p.103-107
Main Authors: Jørgensen, Jens Otto Lunde, Møller, Niels, Wolthers, Troels, Møller, Jens, Grofte, Thorbjørn, Vahl, Nina, Fisker, Sanne, Ørskov, Hans, Christiansen, Jens Sandahl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Apart from being a stimulator of longitudinal growth, growth hormone (GH) regulates fuel metabolism in children and adults. A halfmark is mobilization of lipids, which involves an inhibition of lipoprotein lipase activity in adipose tissue and activation of the hormone sensitive lipase. Suppression of basal glucose oxidation and resistance to insulin are other important effects. This may cause concern during GH substitution in GH-deficient adults, some of whom may present with insulin resistance due to concomitant abdominal obesity. However, there are data to suggest that the GH-induced reduction in fat mass and increase in lean body mass may offset the insulin antagonistic actions of the hormone. The nitrogen-retaining effects of GH seem to involve a direct stimulation of protein synthesis in addition to secondary effects such as generation of insulin-like growth factor-I (IGF-I), hyperinsulinemia, and promotion of lipolysis. Thus, during periods of substrate affluence, GH acts in concert with insulin and IGF-I to promote protein anabolism. Postabsorptively, GH is primarily lipolytic and thereby indirectly protein-sparing. This effect becomes further accentuated with more prolonged fasting. In that sense, GH is unique by its preservation of protein during both feast and famine. These fuel metabolic effects add merit to the principle of GH substitution in hypopituitary adults.
ISSN:0026-0495
1532-8600
DOI:10.1016/0026-0495(95)90229-5