Loading…

A Scaling Law for Wall Shear Rate Through an Arterial Stenosis

Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanical engineering 1994-11, Vol.116 (4), p.446-451
Main Authors: Siegel, John M, Markou, Christos P, Ku, David N, Hanson, S. R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113
cites
container_end_page 451
container_issue 4
container_start_page 446
container_title Journal of biomechanical engineering
container_volume 116
creator Siegel, John M
Markou, Christos P
Ku, David N
Hanson, S. R
description Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition.
doi_str_mv 10.1115/1.2895795
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77762893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77762893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113</originalsourceid><addsrcrecordid>eNp90M9LwzAUwPEgypzTg2cRchDFQ2fSJE1yEcbwFwwEN_EY3tJ06-haTVrE_97Iyo6ewuN9eIQvQueUjCml4o6OU6WF1OIADalIVRIneoiGhHKVEMnoMToJYUMIpYqTARpIlWmZkiG6n-C5haqsV3gG37hoPP6AqsLztQOP36B1eLH2TbdaY6jxxLfOlxDXraubUIZTdFRAFdxZ_47Q--PDYvqczF6fXqaTWQI8lW0il8w6KUDkOqNc5EvOgBbEWcJEYSETsiDMpYSDTXmWy0JbojikknMO8dNshK53dz9989W50JptGayrKqhd0wUjpcxiAhbhzf-Qc5FpxUSUtztpfROCd4X59OUW_I-hxPxVNdT0VaO97K92y63L97LPGPdX_R5CrFl4qG0Z9owxpalQkV3sGIStM5um83WMZpiWmSDsF-f8hE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744569835</pqid></control><display><type>article</type><title>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</title><source>ASME Transactions Journals (Archives)</source><creator>Siegel, John M ; Markou, Christos P ; Ku, David N ; Hanson, S. R</creator><creatorcontrib>Siegel, John M ; Markou, Christos P ; Ku, David N ; Hanson, S. R</creatorcontrib><description>Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.2895795</identifier><identifier>PMID: 7869720</identifier><identifier>CODEN: JBENDY</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Arteriosclerosis - physiopathology ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood Platelets ; Cardiology. Vascular system ; Carotid Stenosis - physiopathology ; Coronary Disease - physiopathology ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Endothelium, Vascular - physiopathology ; Hemorheology ; Humans ; Medical sciences ; Models, Cardiovascular ; Numerical analysis ; Numerical Analysis, Computer-Assisted ; Physiological models ; Physiology ; Reynolds number ; Shear flow ; Shear stress ; Wall flow</subject><ispartof>Journal of biomechanical engineering, 1994-11, Vol.116 (4), p.446-451</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3389158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7869720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siegel, John M</creatorcontrib><creatorcontrib>Markou, Christos P</creatorcontrib><creatorcontrib>Ku, David N</creatorcontrib><creatorcontrib>Hanson, S. R</creatorcontrib><title>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition.</description><subject>Arteriosclerosis - physiopathology</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood Platelets</subject><subject>Cardiology. Vascular system</subject><subject>Carotid Stenosis - physiopathology</subject><subject>Coronary Disease - physiopathology</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Hemorheology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Models, Cardiovascular</subject><subject>Numerical analysis</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Physiological models</subject><subject>Physiology</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Wall flow</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUwPEgypzTg2cRchDFQ2fSJE1yEcbwFwwEN_EY3tJ06-haTVrE_97Iyo6ewuN9eIQvQueUjCml4o6OU6WF1OIADalIVRIneoiGhHKVEMnoMToJYUMIpYqTARpIlWmZkiG6n-C5haqsV3gG37hoPP6AqsLztQOP36B1eLH2TbdaY6jxxLfOlxDXraubUIZTdFRAFdxZ_47Q--PDYvqczF6fXqaTWQI8lW0il8w6KUDkOqNc5EvOgBbEWcJEYSETsiDMpYSDTXmWy0JbojikknMO8dNshK53dz9989W50JptGayrKqhd0wUjpcxiAhbhzf-Qc5FpxUSUtztpfROCd4X59OUW_I-hxPxVNdT0VaO97K92y63L97LPGPdX_R5CrFl4qG0Z9owxpalQkV3sGIStM5um83WMZpiWmSDsF-f8hE8</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Siegel, John M</creator><creator>Markou, Christos P</creator><creator>Ku, David N</creator><creator>Hanson, S. R</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope><scope>7X8</scope></search><sort><creationdate>19941101</creationdate><title>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</title><author>Siegel, John M ; Markou, Christos P ; Ku, David N ; Hanson, S. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Arteriosclerosis - physiopathology</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood Platelets</topic><topic>Cardiology. Vascular system</topic><topic>Carotid Stenosis - physiopathology</topic><topic>Coronary Disease - physiopathology</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Hemorheology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Models, Cardiovascular</topic><topic>Numerical analysis</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Physiological models</topic><topic>Physiology</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Wall flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegel, John M</creatorcontrib><creatorcontrib>Markou, Christos P</creatorcontrib><creatorcontrib>Ku, David N</creatorcontrib><creatorcontrib>Hanson, S. R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegel, John M</au><au>Markou, Christos P</au><au>Ku, David N</au><au>Hanson, S. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>1994-11-01</date><risdate>1994</risdate><volume>116</volume><issue>4</issue><spage>446</spage><epage>451</epage><pages>446-451</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><coden>JBENDY</coden><abstract>Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition.</abstract><cop>New York, NY</cop><pub>ASME</pub><pmid>7869720</pmid><doi>10.1115/1.2895795</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0731
ispartof Journal of biomechanical engineering, 1994-11, Vol.116 (4), p.446-451
issn 0148-0731
1528-8951
language eng
recordid cdi_proquest_miscellaneous_77762893
source ASME Transactions Journals (Archives)
subjects Arteriosclerosis - physiopathology
Biological and medical sciences
Blood and lymphatic vessels
Blood Platelets
Cardiology. Vascular system
Carotid Stenosis - physiopathology
Coronary Disease - physiopathology
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Endothelium, Vascular - physiopathology
Hemorheology
Humans
Medical sciences
Models, Cardiovascular
Numerical analysis
Numerical Analysis, Computer-Assisted
Physiological models
Physiology
Reynolds number
Shear flow
Shear stress
Wall flow
title A Scaling Law for Wall Shear Rate Through an Arterial Stenosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scaling%20Law%20for%20Wall%20Shear%20Rate%20Through%20an%20Arterial%20Stenosis&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Siegel,%20John%20M&rft.date=1994-11-01&rft.volume=116&rft.issue=4&rft.spage=446&rft.epage=451&rft.pages=446-451&rft.issn=0148-0731&rft.eissn=1528-8951&rft.coden=JBENDY&rft_id=info:doi/10.1115/1.2895795&rft_dat=%3Cproquest_cross%3E77762893%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744569835&rft_id=info:pmid/7869720&rfr_iscdi=true