Loading…
A Scaling Law for Wall Shear Rate Through an Arterial Stenosis
Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designe...
Saved in:
Published in: | Journal of biomechanical engineering 1994-11, Vol.116 (4), p.446-451 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113 |
---|---|
cites | |
container_end_page | 451 |
container_issue | 4 |
container_start_page | 446 |
container_title | Journal of biomechanical engineering |
container_volume | 116 |
creator | Siegel, John M Markou, Christos P Ku, David N Hanson, S. R |
description | Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition. |
doi_str_mv | 10.1115/1.2895795 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77762893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77762893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113</originalsourceid><addsrcrecordid>eNp90M9LwzAUwPEgypzTg2cRchDFQ2fSJE1yEcbwFwwEN_EY3tJ06-haTVrE_97Iyo6ewuN9eIQvQueUjCml4o6OU6WF1OIADalIVRIneoiGhHKVEMnoMToJYUMIpYqTARpIlWmZkiG6n-C5haqsV3gG37hoPP6AqsLztQOP36B1eLH2TbdaY6jxxLfOlxDXraubUIZTdFRAFdxZ_47Q--PDYvqczF6fXqaTWQI8lW0il8w6KUDkOqNc5EvOgBbEWcJEYSETsiDMpYSDTXmWy0JbojikknMO8dNshK53dz9989W50JptGayrKqhd0wUjpcxiAhbhzf-Qc5FpxUSUtztpfROCd4X59OUW_I-hxPxVNdT0VaO97K92y63L97LPGPdX_R5CrFl4qG0Z9owxpalQkV3sGIStM5um83WMZpiWmSDsF-f8hE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744569835</pqid></control><display><type>article</type><title>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</title><source>ASME Transactions Journals (Archives)</source><creator>Siegel, John M ; Markou, Christos P ; Ku, David N ; Hanson, S. R</creator><creatorcontrib>Siegel, John M ; Markou, Christos P ; Ku, David N ; Hanson, S. R</creatorcontrib><description>Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.2895795</identifier><identifier>PMID: 7869720</identifier><identifier>CODEN: JBENDY</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Arteriosclerosis - physiopathology ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood Platelets ; Cardiology. Vascular system ; Carotid Stenosis - physiopathology ; Coronary Disease - physiopathology ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Endothelium, Vascular - physiopathology ; Hemorheology ; Humans ; Medical sciences ; Models, Cardiovascular ; Numerical analysis ; Numerical Analysis, Computer-Assisted ; Physiological models ; Physiology ; Reynolds number ; Shear flow ; Shear stress ; Wall flow</subject><ispartof>Journal of biomechanical engineering, 1994-11, Vol.116 (4), p.446-451</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38496</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3389158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7869720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siegel, John M</creatorcontrib><creatorcontrib>Markou, Christos P</creatorcontrib><creatorcontrib>Ku, David N</creatorcontrib><creatorcontrib>Hanson, S. R</creatorcontrib><title>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition.</description><subject>Arteriosclerosis - physiopathology</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood Platelets</subject><subject>Cardiology. Vascular system</subject><subject>Carotid Stenosis - physiopathology</subject><subject>Coronary Disease - physiopathology</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Hemorheology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Models, Cardiovascular</subject><subject>Numerical analysis</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Physiological models</subject><subject>Physiology</subject><subject>Reynolds number</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Wall flow</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUwPEgypzTg2cRchDFQ2fSJE1yEcbwFwwEN_EY3tJ06-haTVrE_97Iyo6ewuN9eIQvQueUjCml4o6OU6WF1OIADalIVRIneoiGhHKVEMnoMToJYUMIpYqTARpIlWmZkiG6n-C5haqsV3gG37hoPP6AqsLztQOP36B1eLH2TbdaY6jxxLfOlxDXraubUIZTdFRAFdxZ_47Q--PDYvqczF6fXqaTWQI8lW0il8w6KUDkOqNc5EvOgBbEWcJEYSETsiDMpYSDTXmWy0JbojikknMO8dNshK53dz9989W50JptGayrKqhd0wUjpcxiAhbhzf-Qc5FpxUSUtztpfROCd4X59OUW_I-hxPxVNdT0VaO97K92y63L97LPGPdX_R5CrFl4qG0Z9owxpalQkV3sGIStM5um83WMZpiWmSDsF-f8hE8</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Siegel, John M</creator><creator>Markou, Christos P</creator><creator>Ku, David N</creator><creator>Hanson, S. R</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope><scope>7X8</scope></search><sort><creationdate>19941101</creationdate><title>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</title><author>Siegel, John M ; Markou, Christos P ; Ku, David N ; Hanson, S. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Arteriosclerosis - physiopathology</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood Platelets</topic><topic>Cardiology. Vascular system</topic><topic>Carotid Stenosis - physiopathology</topic><topic>Coronary Disease - physiopathology</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Hemorheology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Models, Cardiovascular</topic><topic>Numerical analysis</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Physiological models</topic><topic>Physiology</topic><topic>Reynolds number</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Wall flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegel, John M</creatorcontrib><creatorcontrib>Markou, Christos P</creatorcontrib><creatorcontrib>Ku, David N</creatorcontrib><creatorcontrib>Hanson, S. R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegel, John M</au><au>Markou, Christos P</au><au>Ku, David N</au><au>Hanson, S. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scaling Law for Wall Shear Rate Through an Arterial Stenosis</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>1994-11-01</date><risdate>1994</risdate><volume>116</volume><issue>4</issue><spage>446</spage><epage>451</epage><pages>446-451</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><coden>JBENDY</coden><abstract>Atherosclerosis of the human arterial system produces major clinical symptoms when the plaque advances to create a high-grade stenosis. The hemodynamic shear rates produced in high-grade stenoses are important in the understanding of atheromatous plaque rupture and thrombosis. This study was designed to quantify the physiologic stress levels experienced by endothelial cells and platelets in the region of vascular stenoses. The steady hemodynamic flow field was solved for stenoses with percent area reductions of 50, 75, and 90 percent over a range of physiologic Reynolds numbers (100–400). The maximum wall shear rate in the throat region can be shown to vary by the square root of the Reynolds number. The shear rate results can be generalized to apply to a range of stenosis lengths and flow rates. Using dimensions typical for a human carotid or coronary artery, wall shear rates were found to vary from a maximum of 20,000 s−1 upstream of the throat to a minimum of −630 s−1 in the recirculation zone for a 90 percent stenosis. An example is given which illustrates how these values can be used to understand the relationship between hemodynamic shear and platelet deposition.</abstract><cop>New York, NY</cop><pub>ASME</pub><pmid>7869720</pmid><doi>10.1115/1.2895795</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 1994-11, Vol.116 (4), p.446-451 |
issn | 0148-0731 1528-8951 |
language | eng |
recordid | cdi_proquest_miscellaneous_77762893 |
source | ASME Transactions Journals (Archives) |
subjects | Arteriosclerosis - physiopathology Biological and medical sciences Blood and lymphatic vessels Blood Platelets Cardiology. Vascular system Carotid Stenosis - physiopathology Coronary Disease - physiopathology Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Endothelium, Vascular - physiopathology Hemorheology Humans Medical sciences Models, Cardiovascular Numerical analysis Numerical Analysis, Computer-Assisted Physiological models Physiology Reynolds number Shear flow Shear stress Wall flow |
title | A Scaling Law for Wall Shear Rate Through an Arterial Stenosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scaling%20Law%20for%20Wall%20Shear%20Rate%20Through%20an%20Arterial%20Stenosis&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Siegel,%20John%20M&rft.date=1994-11-01&rft.volume=116&rft.issue=4&rft.spage=446&rft.epage=451&rft.pages=446-451&rft.issn=0148-0731&rft.eissn=1528-8951&rft.coden=JBENDY&rft_id=info:doi/10.1115/1.2895795&rft_dat=%3Cproquest_cross%3E77762893%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a427t-7b3ce75a5d96145db43a1f0ec035fca657f03e204ac246d7f9c084a27444a0113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744569835&rft_id=info:pmid/7869720&rfr_iscdi=true |