Loading…

A representational analysis of numeration systems

This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensio...

Full description

Saved in:
Bibliographic Details
Published in:Cognition 1995-12, Vol.57 (3), p.271-295
Main Authors: Zhang, Jiajie, Norman, Donald A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483
cites cdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483
container_end_page 295
container_issue 3
container_start_page 271
container_title Cognition
container_volume 57
creator Zhang, Jiajie
Norman, Donald A.
description This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided.
doi_str_mv 10.1016/0010-0277(95)00674-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77815442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0010027795006743</els_id><sourcerecordid>1291897805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtR4hr9BwoDiuhhtKo_pnsuQgiaBAJe9Nz09tRAh_lYu2aE_ffpzS578OCl6vA-VVQ9QrxF-IKAzVcAhBqktZ9a8xmgsbpWz8QGnVW1dco9F5sz8lK8Yn4AAC2tuxAXzpjGab0ReFVl2mVimpawpHkKQxVK2XPiau6raR0pPwUV73mhkV-LF30YmN6c-qX4_eP7r-vb-v7nzd311X0dNeql7kOUaBTYru01UOhCq0nq3irbIMIWlEKpogtGmmDK8dvCoELXSdsb7dSl-Hjcu8vzn5V48WPiSMMQJppX9tY6NFrLAr7_B3yY11x-YI-yRddaB6ZQ-kjFPDNn6v0upzHkvUfwB5_-IMsfZPnW-CefXpWxd6fl63ak7jx0EljyD6c8cAxDn8MUE58xJRurWluwb0eMirG_ibLnmGiK1KVMcfHdnP5_xyMLYo6z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291897805</pqid></control><display><type>article</type><title>A representational analysis of numeration systems</title><source>Elsevier</source><creator>Zhang, Jiajie ; Norman, Donald A.</creator><creatorcontrib>Zhang, Jiajie ; Norman, Donald A.</creatorcontrib><description>This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided.</description><identifier>ISSN: 0010-0277</identifier><identifier>EISSN: 1873-7838</identifier><identifier>DOI: 10.1016/0010-0277(95)00674-3</identifier><identifier>PMID: 8556844</identifier><identifier>CODEN: CGTNAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cognition ; Communication disorders ; Epistemology. Philosophy of science. Theory of knowledge ; Humans ; Mathematics ; Philosophy</subject><ispartof>Cognition, 1995-12, Vol.57 (3), p.271-295</ispartof><rights>1995</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</citedby><cites>FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3267397$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8556844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jiajie</creatorcontrib><creatorcontrib>Norman, Donald A.</creatorcontrib><title>A representational analysis of numeration systems</title><title>Cognition</title><addtitle>Cognition</addtitle><description>This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided.</description><subject>Cognition</subject><subject>Communication disorders</subject><subject>Epistemology. Philosophy of science. Theory of knowledge</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Philosophy</subject><issn>0010-0277</issn><issn>1873-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFEEQhhtR4hr9BwoDiuhhtKo_pnsuQgiaBAJe9Nz09tRAh_lYu2aE_ffpzS578OCl6vA-VVQ9QrxF-IKAzVcAhBqktZ9a8xmgsbpWz8QGnVW1dco9F5sz8lK8Yn4AAC2tuxAXzpjGab0ReFVl2mVimpawpHkKQxVK2XPiau6raR0pPwUV73mhkV-LF30YmN6c-qX4_eP7r-vb-v7nzd311X0dNeql7kOUaBTYru01UOhCq0nq3irbIMIWlEKpogtGmmDK8dvCoELXSdsb7dSl-Hjcu8vzn5V48WPiSMMQJppX9tY6NFrLAr7_B3yY11x-YI-yRddaB6ZQ-kjFPDNn6v0upzHkvUfwB5_-IMsfZPnW-CefXpWxd6fl63ak7jx0EljyD6c8cAxDn8MUE58xJRurWluwb0eMirG_ibLnmGiK1KVMcfHdnP5_xyMLYo6z</recordid><startdate>19951201</startdate><enddate>19951201</enddate><creator>Zhang, Jiajie</creator><creator>Norman, Donald A.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>19951201</creationdate><title>A representational analysis of numeration systems</title><author>Zhang, Jiajie ; Norman, Donald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Cognition</topic><topic>Communication disorders</topic><topic>Epistemology. Philosophy of science. Theory of knowledge</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Philosophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiajie</creatorcontrib><creatorcontrib>Norman, Donald A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>Cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiajie</au><au>Norman, Donald A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A representational analysis of numeration systems</atitle><jtitle>Cognition</jtitle><addtitle>Cognition</addtitle><date>1995-12-01</date><risdate>1995</risdate><volume>57</volume><issue>3</issue><spage>271</spage><epage>295</epage><pages>271-295</pages><issn>0010-0277</issn><eissn>1873-7838</eissn><coden>CGTNAU</coden><abstract>This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>8556844</pmid><doi>10.1016/0010-0277(95)00674-3</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-0277
ispartof Cognition, 1995-12, Vol.57 (3), p.271-295
issn 0010-0277
1873-7838
language eng
recordid cdi_proquest_miscellaneous_77815442
source Elsevier
subjects Cognition
Communication disorders
Epistemology. Philosophy of science. Theory of knowledge
Humans
Mathematics
Philosophy
title A representational analysis of numeration systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20representational%20analysis%20of%20numeration%20systems&rft.jtitle=Cognition&rft.au=Zhang,%20Jiajie&rft.date=1995-12-01&rft.volume=57&rft.issue=3&rft.spage=271&rft.epage=295&rft.pages=271-295&rft.issn=0010-0277&rft.eissn=1873-7838&rft.coden=CGTNAU&rft_id=info:doi/10.1016/0010-0277(95)00674-3&rft_dat=%3Cproquest_cross%3E1291897805%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1291897805&rft_id=info:pmid/8556844&rfr_iscdi=true