Loading…
A representational analysis of numeration systems
This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensio...
Saved in:
Published in: | Cognition 1995-12, Vol.57 (3), p.271-295 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483 |
container_end_page | 295 |
container_issue | 3 |
container_start_page | 271 |
container_title | Cognition |
container_volume | 57 |
creator | Zhang, Jiajie Norman, Donald A. |
description | This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided. |
doi_str_mv | 10.1016/0010-0277(95)00674-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77815442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0010027795006743</els_id><sourcerecordid>1291897805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtR4hr9BwoDiuhhtKo_pnsuQgiaBAJe9Nz09tRAh_lYu2aE_ffpzS578OCl6vA-VVQ9QrxF-IKAzVcAhBqktZ9a8xmgsbpWz8QGnVW1dco9F5sz8lK8Yn4AAC2tuxAXzpjGab0ReFVl2mVimpawpHkKQxVK2XPiau6raR0pPwUV73mhkV-LF30YmN6c-qX4_eP7r-vb-v7nzd311X0dNeql7kOUaBTYru01UOhCq0nq3irbIMIWlEKpogtGmmDK8dvCoELXSdsb7dSl-Hjcu8vzn5V48WPiSMMQJppX9tY6NFrLAr7_B3yY11x-YI-yRddaB6ZQ-kjFPDNn6v0upzHkvUfwB5_-IMsfZPnW-CefXpWxd6fl63ak7jx0EljyD6c8cAxDn8MUE58xJRurWluwb0eMirG_ibLnmGiK1KVMcfHdnP5_xyMLYo6z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291897805</pqid></control><display><type>article</type><title>A representational analysis of numeration systems</title><source>Elsevier</source><creator>Zhang, Jiajie ; Norman, Donald A.</creator><creatorcontrib>Zhang, Jiajie ; Norman, Donald A.</creatorcontrib><description>This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided.</description><identifier>ISSN: 0010-0277</identifier><identifier>EISSN: 1873-7838</identifier><identifier>DOI: 10.1016/0010-0277(95)00674-3</identifier><identifier>PMID: 8556844</identifier><identifier>CODEN: CGTNAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cognition ; Communication disorders ; Epistemology. Philosophy of science. Theory of knowledge ; Humans ; Mathematics ; Philosophy</subject><ispartof>Cognition, 1995-12, Vol.57 (3), p.271-295</ispartof><rights>1995</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</citedby><cites>FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3267397$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8556844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jiajie</creatorcontrib><creatorcontrib>Norman, Donald A.</creatorcontrib><title>A representational analysis of numeration systems</title><title>Cognition</title><addtitle>Cognition</addtitle><description>This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided.</description><subject>Cognition</subject><subject>Communication disorders</subject><subject>Epistemology. Philosophy of science. Theory of knowledge</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Philosophy</subject><issn>0010-0277</issn><issn>1873-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFEEQhhtR4hr9BwoDiuhhtKo_pnsuQgiaBAJe9Nz09tRAh_lYu2aE_ffpzS578OCl6vA-VVQ9QrxF-IKAzVcAhBqktZ9a8xmgsbpWz8QGnVW1dco9F5sz8lK8Yn4AAC2tuxAXzpjGab0ReFVl2mVimpawpHkKQxVK2XPiau6raR0pPwUV73mhkV-LF30YmN6c-qX4_eP7r-vb-v7nzd311X0dNeql7kOUaBTYru01UOhCq0nq3irbIMIWlEKpogtGmmDK8dvCoELXSdsb7dSl-Hjcu8vzn5V48WPiSMMQJppX9tY6NFrLAr7_B3yY11x-YI-yRddaB6ZQ-kjFPDNn6v0upzHkvUfwB5_-IMsfZPnW-CefXpWxd6fl63ak7jx0EljyD6c8cAxDn8MUE58xJRurWluwb0eMirG_ibLnmGiK1KVMcfHdnP5_xyMLYo6z</recordid><startdate>19951201</startdate><enddate>19951201</enddate><creator>Zhang, Jiajie</creator><creator>Norman, Donald A.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>19951201</creationdate><title>A representational analysis of numeration systems</title><author>Zhang, Jiajie ; Norman, Donald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Cognition</topic><topic>Communication disorders</topic><topic>Epistemology. Philosophy of science. Theory of knowledge</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Philosophy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiajie</creatorcontrib><creatorcontrib>Norman, Donald A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>Cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiajie</au><au>Norman, Donald A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A representational analysis of numeration systems</atitle><jtitle>Cognition</jtitle><addtitle>Cognition</addtitle><date>1995-12-01</date><risdate>1995</risdate><volume>57</volume><issue>3</issue><spage>271</spage><epage>295</epage><pages>271-295</pages><issn>0010-0277</issn><eissn>1873-7838</eissn><coden>CGTNAU</coden><abstract>This article explores the representational structures of numeration systems and the cognitive factors of the representational effect in numerical tasks, focusing on external representations and their interactions with internal representations. Numeration systems are analyzed at four levels: dimensionally, dimensional representations, bases, and symbol representations. The representational properties at these levels affect the processes of numerical tasks in different ways and are responsible for different aspects of the representational effect. This hierarchical structure is also a cognitive taxonomy that can classify nearly all numeration systems that have been invented across the world. Multiplication is selected as an example to demonstrate that complex numerical tasks require the interwoven processing of information distributed across internal and external representations. Finally, a model of distributed numerical cognition is proposed and an answer to the question of why Arabic numerals are so special is provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>8556844</pmid><doi>10.1016/0010-0277(95)00674-3</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-0277 |
ispartof | Cognition, 1995-12, Vol.57 (3), p.271-295 |
issn | 0010-0277 1873-7838 |
language | eng |
recordid | cdi_proquest_miscellaneous_77815442 |
source | Elsevier |
subjects | Cognition Communication disorders Epistemology. Philosophy of science. Theory of knowledge Humans Mathematics Philosophy |
title | A representational analysis of numeration systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20representational%20analysis%20of%20numeration%20systems&rft.jtitle=Cognition&rft.au=Zhang,%20Jiajie&rft.date=1995-12-01&rft.volume=57&rft.issue=3&rft.spage=271&rft.epage=295&rft.pages=271-295&rft.issn=0010-0277&rft.eissn=1873-7838&rft.coden=CGTNAU&rft_id=info:doi/10.1016/0010-0277(95)00674-3&rft_dat=%3Cproquest_cross%3E1291897805%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-fac215307d9f40eada94e24f7376110b033123c8a525a5674bead1318d27f5483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1291897805&rft_id=info:pmid/8556844&rfr_iscdi=true |