Loading…

Structure of the peptide network of pneumococcal peptidoglycan

The peptide network of Streptococcus pneumoniae cell walls was solubilized using the pneumococcal autolytic amidase (N-acetylmuramoyl-L-alanine amidase, EC 3.5.1.28). The peptide material was fractionated into size classes by gel filtration followed by reverse-phase high-performance liquid chromatog...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1987-11, Vol.262 (32), p.15400-15405
Main Authors: Garcia-Bustos, J F, Chait, B T, Tomasz, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The peptide network of Streptococcus pneumoniae cell walls was solubilized using the pneumococcal autolytic amidase (N-acetylmuramoyl-L-alanine amidase, EC 3.5.1.28). The peptide material was fractionated into size classes by gel filtration followed by reverse-phase high-performance liquid chromatography which resolved the peptide population into over 40 fractions. About 40% of the lysines present participate in cross-links between stem peptides. The main components (3 monomers, 5 dimers, and 2 trimers), accounting for 77% of all the wall peptides, were purified. Their structures were determined using a combination of amino acid and end-group analysis, mass spectrometry, and gas-phase sequencing. Two different types of cross-links between stem peptides were found. In the most abundant type there is an alanylserine cross-bridge between the alanine in position 4 of the donor stem peptide and the lysine at position 3 of the acceptor peptide, as in type A3 peptidoglycan. In the second type of cross-link there is no intervening cross-bridge, as in the type A1 peptidoglycan of Gram-negative bacteria. The data indicate that pneumococcal peptidoglycan has a structural complexity comparable to that recently shown in some Gram-negative species.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)47739-3