Loading…
Changes in the expression of fibroblast growth factor receptors mark distinct stages of chondrogenesis in vitro and during chick limb skeletal patterning
Members of the fibroblast growth factor (FGF) family of growth factors are key regulators of limb skeletal patterning and growth. Abnormal expression of FGFs or mutations in their receptors (fgfrs) result in skeletal disorders. Here we show that changes in the expression of fgfrs are intrinsic prope...
Saved in:
Published in: | Developmental dynamics 1995-12, Vol.204 (4), p.446-456 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Members of the fibroblast growth factor (FGF) family of growth factors are key regulators of limb skeletal patterning and growth. Abnormal expression of FGFs or mutations in their receptors (fgfrs) result in skeletal disorders. Here we show that changes in the expression of fgfrs are intrinsic properties of differentiating cartilage. In mesenchymal micromass cultures differentiating into cartilage, as in ovo, fgfr 1 mRNA was found predominantly in undifferentiated, proliferating mesenchyme, fgfr 2 in precartilage cell aggregates, and fgfr 3 in differentiating cartilage nodules. Thus, our data suggest that switches in the expression of fgfr 1, 2, and 3 mRNAs are associated with phases of cartilage patterning both in vitro and in ovo, and mark distinct stages in the development of the limb skeleton. © 1995 wiley‐Liss, Inc. |
---|---|
ISSN: | 1058-8388 1097-0177 |
DOI: | 10.1002/aja.1002040410 |