Loading…

Osmotic dilution stimulates axonal outgrowth by making axons more sensitive to tension

Mechanical tension is a potent stimulator of axonal growth rate, which is also stimulated by osmotic dilution. We wished to determine the relationship, if any, between osmotic stimulation and tensile regulation of axonal growth. We used calibrated glass needles to apply constant force to elongate ax...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 1995-12, Vol.28 (12), p.1429-1438
Main Authors: Lin, Chingju, Lamoureux, Phillip, Buxbaum, Robert E., Heidemann, Steven R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanical tension is a potent stimulator of axonal growth rate, which is also stimulated by osmotic dilution. We wished to determine the relationship, if any, between osmotic stimulation and tensile regulation of axonal growth. We used calibrated glass needles to apply constant force to elongate axons of cultured chick sensory neurons. We find that a neurite being pulled at a constant force will grow 50–300% faster following a 50% dilution of inorganic ions in the culture medium. That is, osmotic dilution appears to cause axons to increase their sensitivity to applied tensions. Experimental interventions suggest that this effect is not mediated by dilution of extracellular calcium, or to osmotic stimulation of adenylate cyclase, or to osmotic stimulation of mechanosensitive ion channels. Rather, experiments measuring the static tension normally borne by neurites suggest a direct mechanical effect on the cytoskeletal proteins of the neurite shaft. Our results are consistent with a formal thermodynamic model for axonal growth in which removing a compressive load on axonal microtubules promotes their assembly, thus promoting axonal elongation.
ISSN:0021-9290
1873-2380
DOI:10.1016/0021-9290(95)00091-7