Loading…

Dithiols and monothiols are linked with GABA transport in membrane vesicles of rat brain synaptosomes

The properties of γ-aminobutyric acid (GABA) transport into membrane vesicles derived from synaptosomes of rat brain have been studied using membrane-permeable and -impermeable sulfhydryl reagents, dithiol-specific reagents and oxidizing reagents. GABA transport is inhibited, reversibly, by very low...

Full description

Saved in:
Bibliographic Details
Published in:FEBS letters 1987-11, Vol.224 (2), p.391-395
Main Authors: Robillard, G.T., Schaaf, J.M., Teelken, A.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The properties of γ-aminobutyric acid (GABA) transport into membrane vesicles derived from synaptosomes of rat brain have been studied using membrane-permeable and -impermeable sulfhydryl reagents, dithiol-specific reagents and oxidizing reagents. GABA transport is inhibited, reversibly, by very low concentrations of the membrane-permeable trivalent arsenical, phenylarsine oxide. Preincubation with this reagent only partially protects GABA transport from inactivation by N-ethylmaleimide (NEM). Thorin, a negatively charged trivalent arsenical, has no influence on GABA transport at concentrations 100-fold higher than that of the inhibitory phenylarsine oxide. The impermeant oxidizing agent, potassium ferricyanide, did not inhibit transport whereas the permeant reagent, diamide, was inhibitory. These data indicate that the GABA transporter possesses an activity-linked dithiol in a hydrophobic region of the carrier not accessible to charged, polar reagents. p-Chloromercuribenzenesulfonate (PCMBS) also inhibits but does not protect against NEM inactivation, suggesting the occurrence of an activity-linked monothiol in a polar region of the carrier.
ISSN:0014-5793
1873-3468
DOI:10.1016/0014-5793(87)80490-8