Loading…

Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to...

Full description

Saved in:
Bibliographic Details
Published in:Organic geochemistry 1995-06, Vol.23 (6), p.485-526
Main Authors: Kenig, Fabien, Sinninghe Damsté, Jaap S., Frewin, Neil L., Hayes, J.M., De Leeuw, Jan W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (δ vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their δ values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of δ values measured was 24.7‰, from −11.6‰ for a component derived from green sulphur bacteria (Chlorobiaceae) to −36.3‰ for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with those of total organic carbon. A resistant aliphatic biomacromolecule produced by microalgae is, therefore, probably an important component of the kerogen. These variations reflect changes in the depositional environment and early diagenetic transformations. Changes in the concentrations of S-bound lipids induced by variations in conditions favourable for sulphurization were discriminated from those related to variations in primary producer assemblages. The water column of the lagoonal basin was stratified and ph
ISSN:0146-6380
1873-5290
DOI:10.1016/0146-6380(95)00049-K