Loading…

On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance

We had previously shown that doxorubicin encapsulation in polyisohexylcyanocrylate nanospheres could circumvent the P-glycoprotein-mediated multidrug resistance (MDR) exhibited by C6 rat glioblastoma in culture. We then investigated what could be the mechanism of such a circumvention. The cytotoxici...

Full description

Saved in:
Bibliographic Details
Published in:Cancer chemotherapy and pharmacology 1996, Vol.37 (6), p.556-560
Main Authors: Hu, Y P, Jarillon, S, Dubernet, C, Couvreur, P, Robert, J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We had previously shown that doxorubicin encapsulation in polyisohexylcyanocrylate nanospheres could circumvent the P-glycoprotein-mediated multidrug resistance (MDR) exhibited by C6 rat glioblastoma in culture. We then investigated what could be the mechanism of such a circumvention. The cytotoxicity of free and encapsulated doxorubicin was evaluated in two MDR variants of the C6 cell line in a device allowing the separation of cells from drugs by a polycarbonate membrane of 0.2 micron pore size. We observed that the progressive disruption of the nanospheres allowed their doxorubicin content to reach the cell monolayer and exert its cytotoxicity in a fashion similar to that exhibited by free doxorubicin. However, no circumvention of MDR is obtained by doxorubicin encapsulation when drug-containing nanospheres are separated from the cells by the polycarbonate membrane. In addition, no effect on azidopine binding to P-glycoprotein-enriched membranes is exerted by unloaded nanospheres, even after their spontaneous degradation in cell-culture medium. Taken together, these results suggest that a physical contact between doxorubicin-containing nanospheres and the cells is required for the circumvention of MDR. The role of degradation products from the nanospheres as modulators of P-glycoprotein activity can be ruled out.
ISSN:0344-5704
1432-0843
DOI:10.1007/s002800050428