Loading…

Morphological Differentiation of N1E-115 Neuroblastoma Cells by Dimethyl Sulfoxide Activation of Lipid Second Messengers

Quantitative changes in the lipid second messenger diacylglycerol (DAG) were studied in the rat neuroblastoma N1E-115 following exposure to the differentiating agent dimethylsulfoxide (DMSO). Relatively high basal levels of DAG are present in these cells, and addition of 2% DMSO elicited a biphasic...

Full description

Saved in:
Bibliographic Details
Published in:Experimental cell research 1996-04, Vol.224 (1), p.16-27
Main Authors: Clejan, Sanda, Dotson, Robert S., Wolf, Erich W., Corb, Michael P., Ide, Charles F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantitative changes in the lipid second messenger diacylglycerol (DAG) were studied in the rat neuroblastoma N1E-115 following exposure to the differentiating agent dimethylsulfoxide (DMSO). Relatively high basal levels of DAG are present in these cells, and addition of 2% DMSO elicited a biphasic increase in DAG levels, dependent on the presence of extracellular Ca2+. Exposure to DMSO also elicited a rapid increase in inositol phosphate and a slight increase in phosphatidic acid (PA), trailing that of DAG. The molecular species (MS) of DAG were analyzed. Within 60 s of DMSO application there were transient increases of DAG representative of phosphatidylinositol (PI) hydrolysis. At longer intervals, more DAG originated from phosphatidylcholine. The MS composition of newly formed PA resembled that of PI and native DAG. Inhibition studies indicated that DAG is formed in the DMSO-treated cells by phospholipases C and that PA formed later is a result of DAG phosphorylation and not activity of phospholipase D (PLD). Undifferentiated cells exhibited an active PLD pathway. In contrast, PLD in DMSO-differentiated cells was not active. In examining the involvement of the sphingomyelin pathway, DMSO exposure was found to increase ceramide levels with a concomitant decrease in sphingomyelin. Addition of the exogenous, soluble analog C6-ceramide to undifferentiated cells resulted in dramatic reductions in DAG and PA levels and PLD activity. These results indicate that DMSO treatment inactivates PLD while activating phospholipases C and the sphingomyelin pathway, suggesting a “switch” between signal transduction pathways in the undifferentiated and differentiated states of N1E-115.
ISSN:0014-4827
1090-2422
DOI:10.1006/excr.1996.0107