Loading…

Three-dimensional electrical impedance tomography

THE electrical resistivity of mammalian tissues varies widely 1–5 and is correlated with physiological function 6–8 . Electrical impedance tomography (EIT) can be used to probe such variations in vivo , and offers a non-invasive means of imaging the internal conductivity distribution of the human bo...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1996-04, Vol.380 (6574), p.509-512
Main Authors: Metherall, P, Barber, D. C, Smallwood, R. H, Brown, B. H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-d35c4109997fc7dabb69fdd78568702a2fe4d8012761abf90dfb04f78ae63ba33
cites cdi_FETCH-LOGICAL-c486t-d35c4109997fc7dabb69fdd78568702a2fe4d8012761abf90dfb04f78ae63ba33
container_end_page 512
container_issue 6574
container_start_page 509
container_title Nature (London)
container_volume 380
creator Metherall, P
Barber, D. C
Smallwood, R. H
Brown, B. H
description THE electrical resistivity of mammalian tissues varies widely 1–5 and is correlated with physiological function 6–8 . Electrical impedance tomography (EIT) can be used to probe such variations in vivo , and offers a non-invasive means of imaging the internal conductivity distribution of the human body 9–11 . But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem 10,12 . This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane 13 . A few studies have attempted three-dimensional EIT image reconstruction 14,15 , but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus 16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening 8 .
doi_str_mv 10.1038/380509a0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77992263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77992263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d35c4109997fc7dabb69fdd78568702a2fe4d8012761abf90dfb04f78ae63ba33</originalsourceid><addsrcrecordid>eNqF0ctKxDAUBuAgio4X8AUUERFdVE_u6VLEGwy4GdclbU600suYtIt5eyMzKogwqwTOx59DfkIOKVxR4OaaG5CQW9ggEyq0yoQyepNMAJjJwHC1Q3ZjfAcASbXYJttGgdLKTAidvQXEzNUtdrHuO9ucYIPVEOoqXet2js52FZ4Mfdu_Bjt_W-yTLW-biAerc4-83N_Nbh-z6fPD0-3NNKuEUUPmuKwEhTzPta-0s2Wpcu-cNjKtBswyj8IZoEwrakufg_MlCK-NRcVLy_keOV_mzkP_MWIciraOFTaN7bAfY6F1njOm1kOumKFKybWQapCSUroeSs2oESLB0z_wvR9D-sRYMBBCa2ZYQhdLVIU-xoC-mIe6tWFRUCi-2iu-20v0aJU3li26H7iqK83PVnMbUz8-pG7q-MM4SJ5UYpdLFtOke8Xwu9Y_Tx4vbWeHMeBv1jf4BNOgtgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204477282</pqid></control><display><type>article</type><title>Three-dimensional electrical impedance tomography</title><source>Nature Journals Online</source><creator>Metherall, P ; Barber, D. C ; Smallwood, R. H ; Brown, B. H</creator><creatorcontrib>Metherall, P ; Barber, D. C ; Smallwood, R. H ; Brown, B. H</creatorcontrib><description>THE electrical resistivity of mammalian tissues varies widely 1–5 and is correlated with physiological function 6–8 . Electrical impedance tomography (EIT) can be used to probe such variations in vivo , and offers a non-invasive means of imaging the internal conductivity distribution of the human body 9–11 . But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem 10,12 . This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane 13 . A few studies have attempted three-dimensional EIT image reconstruction 14,15 , but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus 16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening 8 .</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/380509a0</identifier><identifier>PMID: 8606768</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Algorithms ; Biological and medical sciences ; Computer Simulation ; Conductivity ; Electric Impedance ; Electrical resistivity ; Humanities and Social Sciences ; Impedance ; Investigative techniques, diagnostic techniques (general aspects) ; letter ; Medical research ; Medical sciences ; Medical screening ; Miscellaneous. Technology ; multidisciplinary ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Science ; Science (multidisciplinary) ; Tomography ; Tomography - methods</subject><ispartof>Nature (London), 1996-04, Vol.380 (6574), p.509-512</ispartof><rights>Springer Nature Limited 1996</rights><rights>1996 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Apr 11, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d35c4109997fc7dabb69fdd78568702a2fe4d8012761abf90dfb04f78ae63ba33</citedby><cites>FETCH-LOGICAL-c486t-d35c4109997fc7dabb69fdd78568702a2fe4d8012761abf90dfb04f78ae63ba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2725,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3053683$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8606768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metherall, P</creatorcontrib><creatorcontrib>Barber, D. C</creatorcontrib><creatorcontrib>Smallwood, R. H</creatorcontrib><creatorcontrib>Brown, B. H</creatorcontrib><title>Three-dimensional electrical impedance tomography</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>THE electrical resistivity of mammalian tissues varies widely 1–5 and is correlated with physiological function 6–8 . Electrical impedance tomography (EIT) can be used to probe such variations in vivo , and offers a non-invasive means of imaging the internal conductivity distribution of the human body 9–11 . But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem 10,12 . This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane 13 . A few studies have attempted three-dimensional EIT image reconstruction 14,15 , but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus 16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening 8 .</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Conductivity</subject><subject>Electric Impedance</subject><subject>Electrical resistivity</subject><subject>Humanities and Social Sciences</subject><subject>Impedance</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>letter</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Medical screening</subject><subject>Miscellaneous. Technology</subject><subject>multidisciplinary</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tomography</subject><subject>Tomography - methods</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKxDAUBuAgio4X8AUUERFdVE_u6VLEGwy4GdclbU600suYtIt5eyMzKogwqwTOx59DfkIOKVxR4OaaG5CQW9ggEyq0yoQyepNMAJjJwHC1Q3ZjfAcASbXYJttGgdLKTAidvQXEzNUtdrHuO9ucYIPVEOoqXet2js52FZ4Mfdu_Bjt_W-yTLW-biAerc4-83N_Nbh-z6fPD0-3NNKuEUUPmuKwEhTzPta-0s2Wpcu-cNjKtBswyj8IZoEwrakufg_MlCK-NRcVLy_keOV_mzkP_MWIciraOFTaN7bAfY6F1njOm1kOumKFKybWQapCSUroeSs2oESLB0z_wvR9D-sRYMBBCa2ZYQhdLVIU-xoC-mIe6tWFRUCi-2iu-20v0aJU3li26H7iqK83PVnMbUz8-pG7q-MM4SJ5UYpdLFtOke8Xwu9Y_Tx4vbWeHMeBv1jf4BNOgtgI</recordid><startdate>19960411</startdate><enddate>19960411</enddate><creator>Metherall, P</creator><creator>Barber, D. C</creator><creator>Smallwood, R. H</creator><creator>Brown, B. H</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7QO</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19960411</creationdate><title>Three-dimensional electrical impedance tomography</title><author>Metherall, P ; Barber, D. C ; Smallwood, R. H ; Brown, B. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d35c4109997fc7dabb69fdd78568702a2fe4d8012761abf90dfb04f78ae63ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Conductivity</topic><topic>Electric Impedance</topic><topic>Electrical resistivity</topic><topic>Humanities and Social Sciences</topic><topic>Impedance</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>letter</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Medical screening</topic><topic>Miscellaneous. Technology</topic><topic>multidisciplinary</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tomography</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metherall, P</creatorcontrib><creatorcontrib>Barber, D. C</creatorcontrib><creatorcontrib>Smallwood, R. H</creatorcontrib><creatorcontrib>Brown, B. H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metherall, P</au><au>Barber, D. C</au><au>Smallwood, R. H</au><au>Brown, B. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional electrical impedance tomography</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1996-04-11</date><risdate>1996</risdate><volume>380</volume><issue>6574</issue><spage>509</spage><epage>512</epage><pages>509-512</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>THE electrical resistivity of mammalian tissues varies widely 1–5 and is correlated with physiological function 6–8 . Electrical impedance tomography (EIT) can be used to probe such variations in vivo , and offers a non-invasive means of imaging the internal conductivity distribution of the human body 9–11 . But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem 10,12 . This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane 13 . A few studies have attempted three-dimensional EIT image reconstruction 14,15 , but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus 16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening 8 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>8606768</pmid><doi>10.1038/380509a0</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1996-04, Vol.380 (6574), p.509-512
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_77992263
source Nature Journals Online
subjects Algorithms
Biological and medical sciences
Computer Simulation
Conductivity
Electric Impedance
Electrical resistivity
Humanities and Social Sciences
Impedance
Investigative techniques, diagnostic techniques (general aspects)
letter
Medical research
Medical sciences
Medical screening
Miscellaneous. Technology
multidisciplinary
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Science
Science (multidisciplinary)
Tomography
Tomography - methods
title Three-dimensional electrical impedance tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20electrical%20impedance%20tomography&rft.jtitle=Nature%20(London)&rft.au=Metherall,%20P&rft.date=1996-04-11&rft.volume=380&rft.issue=6574&rft.spage=509&rft.epage=512&rft.pages=509-512&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/380509a0&rft_dat=%3Cproquest_cross%3E77992263%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-d35c4109997fc7dabb69fdd78568702a2fe4d8012761abf90dfb04f78ae63ba33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204477282&rft_id=info:pmid/8606768&rfr_iscdi=true