Loading…

The Natural Mutation Y248C of Human Angiotensinogen Leads to Abnormal Glycosylation and Altered Immunological Recognition of the Protein (∗)

Common molecular variants of the angiotensinogen gene have been associated with human hypertension. The rare Tyr to Cys change at residue 248 of mature angiotensinogen was identified in one pedigree. Heterozygous individuals (Y248C) had a 40% decrease in plasma angiotensinogen concentration and a 35...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-04, Vol.271 (16), p.9838-9844
Main Authors: Gimenez-Roqueplo, Anne-Paule, Leconte, Isabelle, Cohen, Pascale, Simon, Dominique, Guyene, Thanh Tam, Célerier, Jérôme, Pau, Bernard, Corvol, Pierre, Clauser, Eric, Jeunemaitre, Xavier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Common molecular variants of the angiotensinogen gene have been associated with human hypertension. The rare Tyr to Cys change at residue 248 of mature angiotensinogen was identified in one pedigree. Heterozygous individuals (Y248C) had a 40% decrease in plasma angiotensinogen concentration and a 35% reduction of the angiotensin I production rate. Recombinant wild-type (Tyr-248) and mutant (Cys-248) proteins were stably expressed in Chinese hamster ovary cells. Angiotensinogen monoclonal antibodies revealed marked differences in the epitope recognition of the mutant protein and allowed the demonstration of its presence in plasma of Y248C individuals. Similar kinetic constants of angiotensin I production with human renin were observed for both proteins. Western blot analysis showed similar heterogeneities; however, a 3-kDa increase in molecular mass for the Cys-248 protein was observed after immunopurification. Metabolic labeling of the intracellular Cys-248 protein showed a 61-kDa band in addition to the 55.5- and 58-kDa bands observed for the Tyr-248 protein, with all bands being sensitive to endoglycosidase H. In addition, pulse-chase studies revealed a slower intracellular processing for the Cys-248 protein. In conclusion, the Cys-248 mutation alters the structure, glycosylation, and secretion of angiotensinogen in Chinese hamster ovary cells and is accompanied by a decrease in plasma angiotensinogen concentration in Y248C individuals.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.16.9838