Loading…
Role of material surfaces in regulating bone and cartilage cell response
Tissue engineering in vitro and in vivo involves the interaction of cells with a material surface. The nature of the surface can directly influence cellular response, ultimately affecting the rate and quality of new tissue formation. Initial events at the surface include the orientated adsorption of...
Saved in:
Published in: | Biomaterials 1996, Vol.17 (2), p.137-146 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tissue engineering
in vitro and
in vivo involves the interaction of cells with a material surface. The nature of the surface can directly influence cellular response, ultimately affecting the rate and quality of new tissue formation. Initial events at the surface include the orientated adsorption of molecules from the surrounding fluid, creating a conditioned interface to which the cell responds. The gross morphology, as well as the microtopography and chemistry of the surface, determine which molecules can adsorb and how cells will attach and align themselves. The focal attachments made by the cells with their substrate determine cell shape which, when transduced via the cytoskeleton to the nucleus, result in expression of specific phenotypes. Osteoblasts and chondrocytes are sensitive to subtle differences in surface roughness and surface chemistry. Studies comparing chondrocyte response to TiO
2 of differing crystallinities show that cells can discriminate between surfaces at this level as well. Cellular response also depends on the local environmental and state of maturation of the responding cells. Optimizing surface structure for site-specific tissue engineering is one option; modifying surfaces with biologicals is another. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/0142-9612(96)85758-9 |