Loading…

GroEL Binds to and Unfolds Rhodanese Posttranslationally

The Escherichia coli chaperone GroEL is a member of a class of molecular chaperones that possesses a stacked double ring structure containing seven subunits per ring, with approximately 60-kDa subunits. It has been suggested that newly synthesized proteins may interact with a eukaryotic homolog of G...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-03, Vol.271 (12), p.7212-7217
Main Authors: Reid, B G, Flynn, G C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Escherichia coli chaperone GroEL is a member of a class of molecular chaperones that possesses a stacked double ring structure containing seven subunits per ring, with approximately 60-kDa subunits. It has been suggested that newly synthesized proteins may interact with a eukaryotic homolog of GroEL co-translationally, thereby sequestering the unfolded protein from other proteins in the cell. To test whether it is essential for GroEL to form a stable interaction with a nascent polypeptide co-translationally, we translated the well studied GroEL substrate rhodanese in bacterial and wheat germ translation extracts. We found that rhodanese formed stable complexes with GroEL solely posttranslationally. Upon binding to GroEL, the protease resistant N-terminal domain of rhodanese unfolds. This interaction with GroEL leads to productive folding of the full-length rhodanese. We conclude that GroEL is able to assist in the folding of newly synthesized proteins following release from the ribosome and that GroEL can unfold a trapped protein folding intermediate of rhodanese.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.12.7212