Loading…

Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis

The structure of Azotobacter vinelandii ferredoxin I (AvFdI) has been extensively characterized by a variety of techniques. Although its physiological function is unknown, it has long been implicated as being involved in electron donation to nitrogenase. Here we report that the AvFdI gene (fdxA) has...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1988-01, Vol.263 (3), p.1370-1375
Main Authors: Morgan, T V, Lundell, D J, Burgess, B K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structure of Azotobacter vinelandii ferredoxin I (AvFdI) has been extensively characterized by a variety of techniques. Although its physiological function is unknown, it has long been implicated as being involved in electron donation to nitrogenase. Here we report that the AvFdI gene (fdxA) has been cloned from an EcoRI digest lambda library using a synthetic oligonucleotide probe and that its sequence has been determined. The amino acid sequence deduced from the DNA sequence is identical to the previously published protein sequence. Analysis of the promoter region indicates that AvFdI is not a nif specific gene product. A mutant of A. vinelandii has been constructed which is identical to the wild-type, at the DNA level, except that the fdxA gene has been interrupted by insertion of a kanamycin cartridge. This mutant, called LM100, does not synthesize AvFdI but does synthesize the Fe and MoFe proteins of nitrogenase and grows at wild-type rates under N2-fixing conditions. This demonstrates that AvFdI is not required for N2 fixation by A. vinelandii. There is a small acidic protein, which is present in wild-type A. vinelandii, whose level is dramatically increased in LM100. The nature of this protein is under further investigation.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)57312-4