Loading…

Functioning haemoglobin genes in non-nodulating plants

Haemoglobin has previously been recorded in plants only in the nitrogen-fixing nodules formed by symbiotic association between Rhizobium or Frankia and legume or non-legume hosts. Structural similarities amongst these and animal haemoglobins at the protein and gene level suggested a common evolution...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1988-01, Vol.331 (6152), p.178-180
Main Authors: Bogusz, D, Appleby, C.A, Landsmann, J, Dennis, E.S, Trinick, M.J, Peacock, W.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Haemoglobin has previously been recorded in plants only in the nitrogen-fixing nodules formed by symbiotic association between Rhizobium or Frankia and legume or non-legume hosts. Structural similarities amongst these and animal haemoglobins at the protein and gene level suggested a common evolutionary origin. This suggests that haemoglobin genes, inherited from an ancestor common to plants and animals, might be present in all plants. We report here the isolation of a haemoglobin gene from Trema tomentosa, a non-nodulating relative of Parasponia (Ulmaceae). The gene has three introns located at positions identical to those in the haemoglobin genes of nodulating plant species, strengthening the case for a common origin of all plant haemoglobin genes. The data argue strongly against horizontal haemoglobin gene transfer from animals to plants. The Trema gene has a tissue-specific pattern of transcription and translation, producing monomeric haemoglobin in Trema roots. We have also found that the Parasponia haemoglobin gene is transcribed in roots of non-nodulated plants. These results suggest that haemoglobin has a role in the respiratory metabolism of root cells of all plant species. We propose that its special role in nitrogen-fixing nodules has required adaptation of the haemoglobin-gene regulation pathway, to give high expression in the specialized environment of the nodule.
ISSN:0028-0836
1476-4687
DOI:10.1038/331178a0