Loading…
Phosphatidate Phosphohydrolase Catalyzes the Hydrolysis of Ceramide 1-Phosphate, Lysophosphatidate, and Sphingosine 1-Phosphate
A Mg2+-independent phosphatidate phosphohydrolase was purified from rat liver plasma membranes in two distinct forms, an anionic protein and a cationic protein. Both forms of the enzyme dephosphorylated phosphatidate, ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. When assayed...
Saved in:
Published in: | The Journal of biological chemistry 1996-07, Vol.271 (28), p.16506-16509 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Mg2+-independent phosphatidate phosphohydrolase was purified from rat liver plasma membranes in two distinct forms, an anionic protein and a cationic protein. Both forms of the enzyme dephosphorylated phosphatidate, ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. When assayed at a constant molar ratio of lipid to Triton X-100 of 1:500, the apparent Km values of the anionic phosphohydrolase for the lipid substrates was 3.5, 1.9, 0.4, and 4.0 µM, respectively. The relative catalytic efficiency of the enzyme for phosphatidate, ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate was 0.16, 0.14, 0.48, and 0.04 liter (min·mg)−1, respectively. The hydrolysis of phosphatidate was inhibited competitively by ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. The Ki(app) values were 5.5, 5.9, and 4.0 µM, respectively. The hydrolysis of phosphatidate by the phosphohydrolase conformed to a surface dilution kinetic model. It is concluded that the enzyme is a lipid phosphomonoesterase that could modify the balance of phosphatidate, ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate relative to diacylglycerol, ceramide, monoacylglycerol, and sphingosine, respectively. The enzyme could thus play an important role in regulating cell activation and signal transduction. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.271.28.16506 |