Loading…
Molecular Cloning of Human Phosphomevalonate Kinase and Identification of a Consensus Peroxisomal Targeting Sequence
Two overlapping cDNAs which encode human liver phosphomevalonate kinase (PMKase) were isolated. The human PMKase cDNAs predict a 191-amino acid protein with a molecular weight of 21,862, consistent with previous reports for mammalian PMKase (Mr = 21,000-22,500). Further verification of the clones wa...
Saved in:
Published in: | The Journal of biological chemistry 1996-07, Vol.271 (29), p.17330-17334 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two overlapping cDNAs which encode human liver phosphomevalonate kinase (PMKase) were isolated. The human PMKase cDNAs predict a 191-amino acid protein with a molecular weight of 21,862, consistent with previous reports for mammalian PMKase (Mr = 21,000-22,500). Further verification of the clones was obtained by expression of PMKase activity in bacteria using a composite 1024-base pair cDNA clone. Northern blot analysis of several human tissues revealed a doublet of transcripts at approximately 1 kilobase (kb) in heart, liver, skeletal muscle, kidney, and pancreas and lower but detectable transcript levels in brain, placenta, and lung. Analysis of transcripts from human lymphoblasts subcultured in lipid-depleted sera (LDS) and LDS supplemented with lovastatin indicated that PMKase gene expression is subject to regulation by sterol at the level of transcription. Southern blotting indicated that PMKase is a single copy gene covering less than 15 kb in the human genome. The human PMKase amino acid sequence contains a consensus peroxisomal targeting sequence (PTS-1), Ser-Arg-Leu, at the C terminus of the protein. This is the first report of a cholesterol biosynthetic protein which contains a consensus PTS-1, providing further evidence for the concept that early cholesterol and nonsterol isoprenoid biosynthesis may occur in the peroxisome. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.271.29.17330 |