Loading…

Effect of specimen fixation method on pullout tests of pedicle screws

Experimental axial pullout tests of a new type of pedicle screw were done on cadaveric lumbar vertebrae. The manner in which specimens were secured in the testing apparatus was varied to determined influence of specimen fixation method on the maximum pedicle screw pullout force. To determine the app...

Full description

Saved in:
Bibliographic Details
Published in:Spine (Philadelphia, Pa. 1976) Pa. 1976), 1996-05, Vol.21 (9), p.1037-1044
Main Authors: PFEIFFER, M, GILBERTSON, L. G, GOEL, V. K, GRISS, P, KELLER, J. C, RYKEN, T. C, HOFFMAN, H. E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experimental axial pullout tests of a new type of pedicle screw were done on cadaveric lumbar vertebrae. The manner in which specimens were secured in the testing apparatus was varied to determined influence of specimen fixation method on the maximum pedicle screw pullout force. To determine the appropriateness of embedding (i.e., potting) spinal specimens in polymer resin (e.g., bone cement or Plastic Padding [Plastic Padding Ltd., High Wycombe, Buckinghamshire, England]) for axial pullout tests of pedicle screws. Several different specimen fixation methods were examined to make recommendations for the standardization of future experimental testing protocols. Axial pullout of transpedicular screws, although not a likely clinical mode of failure, is a popular experimental testing mode for evaluating screw-bone biomechanics. A wide variety of techniques for securing a vertebral specimen to counter the axial pullout force has been reported (including the use of polymer resin) with a correspondingly wide range in the resulting axial pullout strengths. The possible influence of the specimen fixation method on pedicle screw axial pullout strength has not been addressed previously. Axial pullout tests of pedicle screws (DDS, Plus Endoprothetik, Rotkreuz, Switzerland) from the pedicles of 21 isolated lumber vertebral bodies were done using a Model 810 MTS Universal Testing Machine (MTS Systems, Inc., Minneapolis, Minnesota). The specimens were secured in a custom-made vise fixture either as is or after the vertebral bodies were potted in Plastic Padding up to the pedicle origin. Some of the potted specimens were wrapped first in latex to prevent polymer resin intrusion, and the others were unprotected. Pullout tests were attempted on both the left and right pedicles of each specimen, and the maximum pedicle screw pullout force was recorded. Measurement of bone mineral density by means of dual energy x-ray absorptiometry, in addition to macroscopic and scanning electron microscopy histologic analyses, microradiography, and energy dispersive X-ray spectroscopy, was done post-test to assist in the interpretation of the data. The maximum pedicle screw pullout force was found to be dependent on both the bone mineral density and the mode of fixation of the vertebrae. Embedding in polymer resin without protection of the specimen (i.e., latex wrapping) led to several instances of well-documented polymer resin intrusion; in these specimens, mean maximum pedicle screw pull
ISSN:0362-2436
1528-1159
DOI:10.1097/00007632-199605010-00009