Loading…

A Single Integral Finite Strain Viscoelastic Model of Ligaments and Tendons

A general continuum model for the nonlinear viscoelastic behavior of soft biological tissues was formulated. This single integral finite strain (SIFS) model describes finite deformation of a nonlinearly viscoelastic material within the context of a three-dimensional model. The specific form describi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanical engineering 1996-05, Vol.118 (2), p.221-226
Main Authors: Johnson, G. A, Livesay, G. A, Woo, S. L-Y, Rajagopal, K. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A general continuum model for the nonlinear viscoelastic behavior of soft biological tissues was formulated. This single integral finite strain (SIFS) model describes finite deformation of a nonlinearly viscoelastic material within the context of a three-dimensional model. The specific form describing uniaxial extension was obtained, and the idea of conversion from one material to another (at a microscopic level) was then introduced to model the nonlinear behavior of ligaments and tendons. Conversion allowed different constitutive equations to be used for describing a single ligament or tendon at different strain levels. The model was applied to data from uniaxial extension of younger and older human patellar tendons and canine medial collateral ligaments. Model parameters were determined from curve-fitting stress-strain and stress-relaxation data and used to predict the time-dependent stress generated by cyclic extensions.
ISSN:0148-0731
1528-8951
DOI:10.1115/1.2795963